Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineers take first step toward flexible, wearable, tricorder-like device

24.05.2016

The Chem-Phys patch monitors both biochemical and electric signals in the human body at the same time -- a first

Engineers at the University of California San Diego have developed the first flexible wearable device capable of monitoring both biochemical and electric signals in the human body. The Chem-Phys patch records electrocardiogram (EKG) heart signals and tracks levels of lactate, a biochemical that is a marker of physical effort, in real time. The device can be worn on the chest and communicates wirelessly with a smartphone, smart watch or laptop. It could have a wide range of applications, from athletes monitoring their workouts to physicians monitoring patients with heart disease.


The ChemPhys patch can be worn on the chest, near the base of the sternum, and communicates wirelessly with a smartphone, smart watch or laptop.

Credit: Jacobs School of Engineering/UC San Diego

Nanoengineers and electrical engineers at the UC San Diego Center for Wearable Sensors worked together to build the device, which includes a flexible suite of sensors and a small electronic board. The device also can transmit the data from biochemical and electrical signals via Bluetooth.

Nanoengineering professor Joseph Wang and electrical engineering professor Patrick Mercier at the UC San Diego Jacobs School of Engineering led the project, with Wang's team working on the patch's sensors and chemistry, while Mercier's team worked on the electronics and data transmission. They describe the Chem-Phys patch in the May 23 issue of Nature Communications.

"One of the overarching goals of our research is to build a wearable tricorder-like device that can measure simultaneously a whole suite of chemical, physical and electrophysiological signals continuously throughout the day," Mercier said. "This research represents an important first step to show this may be possible."

Most commercial wearables only measure one signal, such as steps or heart rate, Mercier said. Almost none of them measure chemical signals, such as lactate.

That is the gap that the sensor designed by researchers at the Jacobs School of Engineering at UC San Diego aims to bridge. Combining information about heart rate and lactate--a first in the field of wearable sensors--could be especially useful for athletes wanting to improve their performance. Both Mercier and Wang have been fielding inquiries from Olympic athletes about the technologies the Center for Wearable Sensors produces.

"The ability to sense both EKG and lactate in a small wearable sensor could provide benefits in a variety of areas," explained Dr. Kevin Patrick, a physician and director of the Center for Wireless and Population Health Systems at UC San Diego, who was not involved with the research. "There would certainly be interest in the sports medicine community about how this type of sensing could help optimize training regimens for elite athletes," added Patrick, who is also a member of the Center for Wearable Sensors. "The ability to concurrently assess EKG and lactate could also open up some interesting possibilities in preventing and/or managing individuals with cardiovascular disease."

The researchers' biggest challenge was making sure that signals from the two sensors didn't interfere with each other. This required some careful engineering and a fair bit of experimentation before finding the right configuration for the sensors.

Making the patch

Researchers used screen printing to manufacture the patch on a thin, flexible polyester sheet that can be applied directly to the skin. An electrode to sense lactate was printed in the center of the patch, with two EKG electrodes bracketing it to the left and the right. Engineers went through several iterations of the patch to find the best distance between electrodes to avoid interference while gathering the best quality signal. They found that a distance of four centimeters (roughly 1.5 inches) between the EKG electrodes was optimal.

Researchers also had to make sure the EKG sensors were isolated from the lactate sensor. The latter works by applying a small voltage and measuring electric current across its electrodes. This current can pass through sweat, which is slightly conductive, and can potentially disrupt EKG measurements. So the researchers added a printed layer of soft water-repelling silicone rubber to the patch and configured it to keep the sweat away from the EKG electrodes, but not the lactate sensor.

The sensors were then connected to a small custom printed circuit board equipped with a microcontroller and a Bluetooth Low Energy chip, which wirelessly transmitted the data gathered by the patch to a smartphone or a computer.

Testing

The patch was tested on three male subjects, who wore the device on their chest, near the base of their sternum, while doing 15 to 30 minutes of intense activity on a stationary bike. Two of the subjects also wore a commercial wristband heart rate monitor. The data collected by the EKG electrodes on the patch closely matched the data collected by the commercial wristband. The data collected by the lactate biosensor follows closely data collected during increasing intensity workouts in other studies.

Next steps

Next steps include improving the way the patch and the board are connected and adding sensors for other chemical markers, such as magnesium and potassium, as well as other vital signs. Physicians working with Wang and Mercier are also excited about the possibility of analyzing the data from the two signals and see how they correlate.

###

A wearable chemical-electrophysiological hybrid biosensing system for real-time health and fitness monitoring

Authors: Somayeh Imani,*, Amay J. Bandodkar,*, A.M.Vinu Mohan, Rajan Kumar, Shengfei Yu, Joseph Wang & Patrick P. Mercier, Departments of NanoEngineering and Electrical Engineering, Jacobs School of Engineering, UC San Diego

* These authors contributed equally to this work.

Funding from the National Institute of Biomedical Imaging and Bioengineering at the National Institutes of Health (R21EB019698), Samsung and the Arnold and Mabel Beckman Foundation.

Media Contact

Ioana Patringenaru
ipatrin@eng.ucsd.edu
858-822-0899

 @UCSanDiego

http://www.ucsd.edu 

Ioana Patringenaru | EurekAlert!

Further reports about: Bluetooth EKG Sensors Wearable biochemical data transmission electrodes heart rate human body

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>