Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Energy Efficient 22.8 TFlop Supercomputer Introduced

19.11.2008
Five years ago, Virginia Tech burst onto the high-performance computing scene using Apple Power Mac G5 computers to build System X, one of the fastest supercomputers of its time. Today, Srinidhi Varadarajan and Kirk W. Cameron of Virginia Tech's Center for High-End Computing Systems (CHECS) and professors of computer science in Virginia Tech's College of Engineering, have architected a new supercomputer.

This time, while the new System G supercomputer is twice as fast as its predecessor, their primary goal was to demonstrate that supercomputers can be both fast and a more environmentally green technology.

System G clocks in at an incredible 22.8 TFlops (or trillion operations per second). And keeping with tradition, though bid under a competitive contract, the machine consists of 325 Mac Pro computers; each with two 4-core 2.8 gigahertz (GHz) Intel Xeon processors and eight gigabytes (GB) random access memory (RAM). “However, the novelty of this machine does not end there,” Varadarajan said.

They will discuss System G at the SuperComputing08 conference at the Austin Convention Center that is being held this week.

Most high-performance computing systems research is conducted at small scales of 32, 64, or at most 128 nodes. Larger machines are typically used in production mode where experimental software is anathema to the end user focused on solving fundamental problems in computational science and engineering. System G was sponsored in part by the National Science Foundation and CHECS to address the gap in scale between research and production machines. The purpose of System G is to provide a research platform for the development of high-performance software tools and applications with extreme efficiency at scale.

“Given our research strengths at the Center for High-End Computing Systems, we were able to partner with Mellanox to create the first supercomputer running over quad data rate (QDR) InfiniBand (40Gbs) interconnect technology. The low latency and high bandwidth characteristics of QDR InfiniBand enable new research in transparent distributed shared memory systems that focus on usability of cluster supercomputers,” said Varadarajan, director of CHECS. In preliminary tests, System G was able to obtain transfer rates of over three gigabytes per second with small message latencies close to one microsecond.

Given these state-of-the-art communication rates (e.g., data sets consisting of nearly one billion numbers traveling between any two compute nodes in one second, with the first value arriving in one-millionth of a second), supercomputer systems and applications requiring unprecedented levels of data movement can be considered.

But, what makes System G so green? “We set out to design the fastest supercomputer with advanced power management capabilities such as power-aware CPUs, disks, and memory. Our partnership with Apple ensured the most advanced network of power and thermal sensors ever assembled in this type of machine,” commented Cameron, an expert on green computing. According to Cameron, System G has thousands of power and thermal sensors. As the world’s largest power-aware cluster, System G will allow CHECS researchers to design and develop algorithms and systems software that achieve high-performance with modest power requirements, and to test such systems at unprecedented scale.

”We are pleased to have Mellanox 40Gb/s end-to-end InfiniBand adapters and switches be the foundation for Virginia Tech’s research initiatives on power-aware and green computing, advanced scientific research systems, and future high productivity solutions,” said Sash Sunkara, vice president of marketing at Mellanox technologies. “Our advanced interconnect technology is designed to provide world-leading productivity for high-performance computing and enterprise data center clustering solutions, providing faster and more efficient research and engineering simulations.”

The mission of the CHECS is world-class computer systems research in the service of high-end computing. CHECS faculty (http://www.checs.eng.vt.edu/people.php) work on a broad array of problems and design a wide range of technologies, all with the goal of developing the next generation of powerful and usable high-end computing resources. Their focus is primarily on computer science systems research.

Center members recognize that high-end resources must be powerful in a broad sense (i.e., high-performance, high-capacity, high-throughput, high-reliability, etc.), and at the same time they must be more usable and more energy efficient than current high performance computing (HPC) systems. Toward that end, the center is pursuing a broad research agenda in areas such as processor and memory architectures, operating systems, run-time systems, communication subsystems, fault-tolerance, scheduling and load-balancing, power-aware systems and algorithms, numerical algorithms, and programming models.

The center’s goal is to build computing systems and environments that can efficiently and usably span the scales from department-sized machines to national-scale resources. CHECS was established in September 2005 and supported by Virginia Tech's College of Engineering. It currently has 12 tenured/tenure track computer science faculty and 65 masters and Ph.D. students.

Lynn Nystrom | Newswise Science News
Further information:
http://www.vt.edu

More articles from Information Technology:

nachricht Information integration and artificial intelligence for better diagnosis and therapy decisions
24.05.2017 | Fraunhofer MEVIS - Institut für Bildgestützte Medizin

nachricht World's thinnest hologram paves path to new 3-D world
18.05.2017 | RMIT University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>