Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Energy Efficient 22.8 TFlop Supercomputer Introduced

19.11.2008
Five years ago, Virginia Tech burst onto the high-performance computing scene using Apple Power Mac G5 computers to build System X, one of the fastest supercomputers of its time. Today, Srinidhi Varadarajan and Kirk W. Cameron of Virginia Tech's Center for High-End Computing Systems (CHECS) and professors of computer science in Virginia Tech's College of Engineering, have architected a new supercomputer.

This time, while the new System G supercomputer is twice as fast as its predecessor, their primary goal was to demonstrate that supercomputers can be both fast and a more environmentally green technology.

System G clocks in at an incredible 22.8 TFlops (or trillion operations per second). And keeping with tradition, though bid under a competitive contract, the machine consists of 325 Mac Pro computers; each with two 4-core 2.8 gigahertz (GHz) Intel Xeon processors and eight gigabytes (GB) random access memory (RAM). “However, the novelty of this machine does not end there,” Varadarajan said.

They will discuss System G at the SuperComputing08 conference at the Austin Convention Center that is being held this week.

Most high-performance computing systems research is conducted at small scales of 32, 64, or at most 128 nodes. Larger machines are typically used in production mode where experimental software is anathema to the end user focused on solving fundamental problems in computational science and engineering. System G was sponsored in part by the National Science Foundation and CHECS to address the gap in scale between research and production machines. The purpose of System G is to provide a research platform for the development of high-performance software tools and applications with extreme efficiency at scale.

“Given our research strengths at the Center for High-End Computing Systems, we were able to partner with Mellanox to create the first supercomputer running over quad data rate (QDR) InfiniBand (40Gbs) interconnect technology. The low latency and high bandwidth characteristics of QDR InfiniBand enable new research in transparent distributed shared memory systems that focus on usability of cluster supercomputers,” said Varadarajan, director of CHECS. In preliminary tests, System G was able to obtain transfer rates of over three gigabytes per second with small message latencies close to one microsecond.

Given these state-of-the-art communication rates (e.g., data sets consisting of nearly one billion numbers traveling between any two compute nodes in one second, with the first value arriving in one-millionth of a second), supercomputer systems and applications requiring unprecedented levels of data movement can be considered.

But, what makes System G so green? “We set out to design the fastest supercomputer with advanced power management capabilities such as power-aware CPUs, disks, and memory. Our partnership with Apple ensured the most advanced network of power and thermal sensors ever assembled in this type of machine,” commented Cameron, an expert on green computing. According to Cameron, System G has thousands of power and thermal sensors. As the world’s largest power-aware cluster, System G will allow CHECS researchers to design and develop algorithms and systems software that achieve high-performance with modest power requirements, and to test such systems at unprecedented scale.

”We are pleased to have Mellanox 40Gb/s end-to-end InfiniBand adapters and switches be the foundation for Virginia Tech’s research initiatives on power-aware and green computing, advanced scientific research systems, and future high productivity solutions,” said Sash Sunkara, vice president of marketing at Mellanox technologies. “Our advanced interconnect technology is designed to provide world-leading productivity for high-performance computing and enterprise data center clustering solutions, providing faster and more efficient research and engineering simulations.”

The mission of the CHECS is world-class computer systems research in the service of high-end computing. CHECS faculty (http://www.checs.eng.vt.edu/people.php) work on a broad array of problems and design a wide range of technologies, all with the goal of developing the next generation of powerful and usable high-end computing resources. Their focus is primarily on computer science systems research.

Center members recognize that high-end resources must be powerful in a broad sense (i.e., high-performance, high-capacity, high-throughput, high-reliability, etc.), and at the same time they must be more usable and more energy efficient than current high performance computing (HPC) systems. Toward that end, the center is pursuing a broad research agenda in areas such as processor and memory architectures, operating systems, run-time systems, communication subsystems, fault-tolerance, scheduling and load-balancing, power-aware systems and algorithms, numerical algorithms, and programming models.

The center’s goal is to build computing systems and environments that can efficiently and usably span the scales from department-sized machines to national-scale resources. CHECS was established in September 2005 and supported by Virginia Tech's College of Engineering. It currently has 12 tenured/tenure track computer science faculty and 65 masters and Ph.D. students.

Lynn Nystrom | Newswise Science News
Further information:
http://www.vt.edu

More articles from Information Technology:

nachricht Magnetic Quantum Objects in a "Nano Egg-Box"
25.07.2017 | Universität Wien

nachricht 3-D scanning with water
24.07.2017 | Association for Computing Machinery

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>