Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Energy-autonomous and wireless monitoring protects marine gearboxes

25.03.2015

The IPH presents a solution at HANNOVER MESSE 2015 to make ship traffic more reliable while decreasing the maintenance costs at the same time. In cooperation with project partners, the research institute from Hannover, Germany, has developed a sensor system which continuously monitors the condition of the marine gearbox, thus preventing breakdowns. Special feature: the monitoring system works wirelessly and energy-autonomously. The required electrical power is generated where it is needed – directly at the sensor.

As well as cars need to be certified regularly (in Germany by the TÜV – Technical Inspection Association), ships need to be inspected – if the powertrain stops unexpectedly, it is not only annoying but also dangerous. In this context, the gearbox is of particular importance as it is a critical element between the diesel engine and the propeller system, which ensures the reliability of the entire marine propulsion. If the gearbox breaks down, the entire propulsion stops.


Container ship in the port of Hamburg: Regularly maintenance costs time and money. If the condition of the gearbox is monitored wirelessly, the effort of maintenance is reduced.

Source: Gunnar Ries / Creative Commons


Core of the marine propulsion system: the gearbox. A similar model will be shown at HANNOVER MESSE 2015 to illustrate the new measuring system.

REINTJES GmbH

Ship inspections cost time and money like the TÜV inspections for cars. The ships need to stay in port and the shipping companies lose revenue. The extension of inspection intervals is only granted if the machinery condition is continuously monitored, which is called ‘Condition-Based Maintenance’ (CBM).

Sensor elements measure torques, vibrations and temperatures in the gearbox around the clock. With the help of these data it is possible to detect failures. A maintenance service can be done before the gearbox breaks down. So far, CBM systems are expensive, because lots of cables must be routed from the board computer and power supply to the gearbox.

In the future wireless CBM is possible: the ‘Institut für Integrierte Produktion Hannover gGmbH’ (IPH) developed a sensor system in cooperation with project partners that works without cables for energy supply or data transmission – and does not even need batteries.

The researchers estimate that the sensor system can work for at least ten years once installed at the gearbox. The entire electrical components are housed in a sturdy metal case the size of a coffee cup, so neither dirt nor sea water can influence the working process.

The energy which is needed to measure and transmit data to the board computer is generated right at the sensor node. This is possible with the help of energy harvesting systems, which use the temperature difference between sea water and gearbox surface. The operating temperature of the gearbox surface is at a constant level of about 60°C.

The sea water temperature depends on the region where the ship is operating: It can be down to 5°C cold or up to 25°C warm, but in any case it is always much cooler than the gearbox surface. Thermoelectric generators use the temperature difference to supply the sensor nodes with electrical energy.

In the research project ‘DriveCoM’ the IPH as project coordinator has worked closely together with industry partners. The microsensys GmbH, based in Erfurt, has realized the radio transmission from the sensor nodes to the board computer: the data are passively transferred using RFID technology, which requires very small amounts of energy. The Bachmann Monitoring GmbH from Rudolstadt has dealt with the selection of sensors and the structure of the receiving station of the CBM system.

The IPH was responsible for the signal analysis: characteristic values can be calculated from the measurement data on the microcontroller of the sensor node and indicate whether a potential damage is about to occur. The energy harvesting system is the specialty of the HSG-IMIT – Institut für Mikro- und Informationstechnik der Hahn-Schickard-Gesellschaft e.V. from Villingen-Schwenningen.

During the research project the HSG-IMIT adapted the thermoelectric generator, so that the sensor nodes are continuously supplied with energy. Finally the sensor system was tested on the gearbox test rig of REINTJES GmbH, a manufacturer of marine gearboxes from Hameln.

At HANNOVER MESSE 2015, the world's biggest industrial fair from 13 to 17 April, the results of the project ‘DriveCoM’ are presented. At the joint stand of the state of Lower Saxony in Hall 2 (stand A08) a real marine gearbox from REINTJES GmbH will be shown – and the visitors learn how the wireless and energy-autonomous sensor system works.

Weitere Informationen:

http://www.drivecom.iph-hannover.de

Susann Reichert | idw - Informationsdienst Wissenschaft

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>