Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Energy-autonomous and wireless monitoring protects marine gearboxes

25.03.2015

The IPH presents a solution at HANNOVER MESSE 2015 to make ship traffic more reliable while decreasing the maintenance costs at the same time. In cooperation with project partners, the research institute from Hannover, Germany, has developed a sensor system which continuously monitors the condition of the marine gearbox, thus preventing breakdowns. Special feature: the monitoring system works wirelessly and energy-autonomously. The required electrical power is generated where it is needed – directly at the sensor.

As well as cars need to be certified regularly (in Germany by the TÜV – Technical Inspection Association), ships need to be inspected – if the powertrain stops unexpectedly, it is not only annoying but also dangerous. In this context, the gearbox is of particular importance as it is a critical element between the diesel engine and the propeller system, which ensures the reliability of the entire marine propulsion. If the gearbox breaks down, the entire propulsion stops.


Container ship in the port of Hamburg: Regularly maintenance costs time and money. If the condition of the gearbox is monitored wirelessly, the effort of maintenance is reduced.

Source: Gunnar Ries / Creative Commons


Core of the marine propulsion system: the gearbox. A similar model will be shown at HANNOVER MESSE 2015 to illustrate the new measuring system.

REINTJES GmbH

Ship inspections cost time and money like the TÜV inspections for cars. The ships need to stay in port and the shipping companies lose revenue. The extension of inspection intervals is only granted if the machinery condition is continuously monitored, which is called ‘Condition-Based Maintenance’ (CBM).

Sensor elements measure torques, vibrations and temperatures in the gearbox around the clock. With the help of these data it is possible to detect failures. A maintenance service can be done before the gearbox breaks down. So far, CBM systems are expensive, because lots of cables must be routed from the board computer and power supply to the gearbox.

In the future wireless CBM is possible: the ‘Institut für Integrierte Produktion Hannover gGmbH’ (IPH) developed a sensor system in cooperation with project partners that works without cables for energy supply or data transmission – and does not even need batteries.

The researchers estimate that the sensor system can work for at least ten years once installed at the gearbox. The entire electrical components are housed in a sturdy metal case the size of a coffee cup, so neither dirt nor sea water can influence the working process.

The energy which is needed to measure and transmit data to the board computer is generated right at the sensor node. This is possible with the help of energy harvesting systems, which use the temperature difference between sea water and gearbox surface. The operating temperature of the gearbox surface is at a constant level of about 60°C.

The sea water temperature depends on the region where the ship is operating: It can be down to 5°C cold or up to 25°C warm, but in any case it is always much cooler than the gearbox surface. Thermoelectric generators use the temperature difference to supply the sensor nodes with electrical energy.

In the research project ‘DriveCoM’ the IPH as project coordinator has worked closely together with industry partners. The microsensys GmbH, based in Erfurt, has realized the radio transmission from the sensor nodes to the board computer: the data are passively transferred using RFID technology, which requires very small amounts of energy. The Bachmann Monitoring GmbH from Rudolstadt has dealt with the selection of sensors and the structure of the receiving station of the CBM system.

The IPH was responsible for the signal analysis: characteristic values can be calculated from the measurement data on the microcontroller of the sensor node and indicate whether a potential damage is about to occur. The energy harvesting system is the specialty of the HSG-IMIT – Institut für Mikro- und Informationstechnik der Hahn-Schickard-Gesellschaft e.V. from Villingen-Schwenningen.

During the research project the HSG-IMIT adapted the thermoelectric generator, so that the sensor nodes are continuously supplied with energy. Finally the sensor system was tested on the gearbox test rig of REINTJES GmbH, a manufacturer of marine gearboxes from Hameln.

At HANNOVER MESSE 2015, the world's biggest industrial fair from 13 to 17 April, the results of the project ‘DriveCoM’ are presented. At the joint stand of the state of Lower Saxony in Hall 2 (stand A08) a real marine gearbox from REINTJES GmbH will be shown – and the visitors learn how the wireless and energy-autonomous sensor system works.

Weitere Informationen:

http://www.drivecom.iph-hannover.de

Susann Reichert | idw - Informationsdienst Wissenschaft

More articles from Information Technology:

nachricht Smart Computers
21.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht AI implications: Engineer's model lays groundwork for machine-learning device
18.08.2017 | Washington University in St. Louis

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>