Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Efficient Processing of Big Data on a Daily Routine Basis

10.06.2014

Computer systems today can be found in nearly all areas of life, from smartphones to smart cars to self-organized production facilities.

These computer systems supply rapidly growing data volumes. Computer science now faces the challenge of processing these huge amounts of data (big data) in a reasonable and secure manner. The new priority program “Algorithms for Big Data” (SPP 1736) funded by the German Research Foundation (DFG) is aimed at developing more efficient computing operations. The Institute of Theoretical Informatics of the Karlsruhe Institute of Technology (KIT) is involved in four of 15 partial projects of this SPP.   


By means of an algorithm, increasing networking of students on Facebook can be displayed according to their age. (Graphics: Michael Hamann, KIT)

As a result of new mobile technologies, such as smartphones or tablet PCs, use of computer systems increased rapidly in the past years. These systems produce increasing amounts of data of variable structure. However, adequate programs for processing these data are lacking. “The algorithms known so far are not designed for processing the huge data volumes associated with many problems. The new priority program is aimed at developing theoretically sound methods that can be applied in practice,” explains Assistant Professor Henning Meyerhenke, KIT.

So far, research relating to big data has focused on scientific applications, such as computer-supported simulations for weather forecasts. Now, KIT researchers are working on solutions to enhance the efficiency of computing processes, which can be applied on a daily routine basis. Examples are search queries on the internet or the structural analysis of social networks.

... more about:
»Algorithms »Big Data »SPP »encoding »networks »processing

Four KIT research groups participate in the priority program.

The priority program “Algorithms for Big Data” that is funded by the DFG for a period of six years covers several projects all over Germany. Among these projects are four of the KIT Institute of Theoretical Informatics.

The project “Rapid Inexact Combinatorial and Algebraic Solvers for Large Networks” of Assistant Professor Henning Meyerhenke addresses complex problems encountered in large networks. The tasks to be solved are motivated by biological applications. For example, individuals of a species can be networked according to the similarity of their genome and then classified. The new processes help classify the data arising with a reduced calculation expenditure. In this way, it is easier for biologists to derive new findings.

In the project “Scalable Cryptography” of Assistant Professor Dennis Hofheinz (KIT) and Professor Eike Klitz (Ruhr-Universität Bochum), work focuses on the security of big data. Cryptographic methods, such as encoding or digital signatures, guarantee security also in case of big data volumes. However, existing methods are difficult to adapt to the new tasks. The security provided by the RSA-OAEP encoding method used in conventional internet browsers, for instance, is insufficient in case of big data. “We are looking for a solution that stably guarantees security even in case of an increasing number of accesses and users,” says Assistant Professor Dennis Hofheinz, who is member of the Cryptography and Security Working Group at the KIT.

The increasingly growing social networks, such as Facebook or Twitter, produce large data accumulations. At the same time, these data are of high economic and political value. The project “Clustering in Social Online Networks” of Professor Dorothea Wagner (KIT) and Professor Ulrik Brandes (Universität Konstanz) starts at this point. With the help of new algorithms, the development of online communities in social networks shall be reproduced.

To search a big volume of data e.g. on the internet, a functioning tool, such as a good search machine, is indispensable. “The search machines used today can be further improved by algorithms of increased efficiency,” Professor Peter Sanders says, who also conducts research at the Institute of Theoretical Informatics. Within the framework of his project “Text Indexing for Big Data”, Sanders, together with Professor Johannes Fischer of the Technical University of Dortmund, is looking for optimization options. In particular, they plan to use many processors at the same time, while searching of data in strongly compressed form shall remain possible.

Big Data at the KIT

The topic of Big Data is of high relevance in various application scenarios. Not only science, but also users of new technologies are increasingly facing so far unknown problems. To manage these problems, the KIT works on various Big Data projects apart from SPP 1736. For instance, KIT is partner of the Helmholtz project “Large Scale Data Management and Analysis” (LSDMA). This project pools various competences in handling big data, as it covers effective acquisition, storage, distribution, analysis, visualization, and archiving of data.

In addition, the KIT has been operating the Smart Data Innovation Lab (SDIL), a platform for Big Data research, since 2014. The SDIL reaches highest performance and can be used in practice by industry and science. 

http://www.kit.edu/kit/english/pi_2014_15153.php

Monika Landgraf | AlphaGalileo

Further reports about: Algorithms Big Data SPP encoding networks processing

More articles from Information Technology:

nachricht NASA CubeSat to test miniaturized weather satellite technology
10.11.2017 | NASA/Goddard Space Flight Center

nachricht New approach uses light instead of robots to assemble electronic components
08.11.2017 | The Optical Society

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>