Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Efficient Processing of Big Data on a Daily Routine Basis

10.06.2014

Computer systems today can be found in nearly all areas of life, from smartphones to smart cars to self-organized production facilities.

These computer systems supply rapidly growing data volumes. Computer science now faces the challenge of processing these huge amounts of data (big data) in a reasonable and secure manner. The new priority program “Algorithms for Big Data” (SPP 1736) funded by the German Research Foundation (DFG) is aimed at developing more efficient computing operations. The Institute of Theoretical Informatics of the Karlsruhe Institute of Technology (KIT) is involved in four of 15 partial projects of this SPP.   


By means of an algorithm, increasing networking of students on Facebook can be displayed according to their age. (Graphics: Michael Hamann, KIT)

As a result of new mobile technologies, such as smartphones or tablet PCs, use of computer systems increased rapidly in the past years. These systems produce increasing amounts of data of variable structure. However, adequate programs for processing these data are lacking. “The algorithms known so far are not designed for processing the huge data volumes associated with many problems. The new priority program is aimed at developing theoretically sound methods that can be applied in practice,” explains Assistant Professor Henning Meyerhenke, KIT.

So far, research relating to big data has focused on scientific applications, such as computer-supported simulations for weather forecasts. Now, KIT researchers are working on solutions to enhance the efficiency of computing processes, which can be applied on a daily routine basis. Examples are search queries on the internet or the structural analysis of social networks.

... more about:
»Algorithms »Big Data »SPP »encoding »networks »processing

Four KIT research groups participate in the priority program.

The priority program “Algorithms for Big Data” that is funded by the DFG for a period of six years covers several projects all over Germany. Among these projects are four of the KIT Institute of Theoretical Informatics.

The project “Rapid Inexact Combinatorial and Algebraic Solvers for Large Networks” of Assistant Professor Henning Meyerhenke addresses complex problems encountered in large networks. The tasks to be solved are motivated by biological applications. For example, individuals of a species can be networked according to the similarity of their genome and then classified. The new processes help classify the data arising with a reduced calculation expenditure. In this way, it is easier for biologists to derive new findings.

In the project “Scalable Cryptography” of Assistant Professor Dennis Hofheinz (KIT) and Professor Eike Klitz (Ruhr-Universität Bochum), work focuses on the security of big data. Cryptographic methods, such as encoding or digital signatures, guarantee security also in case of big data volumes. However, existing methods are difficult to adapt to the new tasks. The security provided by the RSA-OAEP encoding method used in conventional internet browsers, for instance, is insufficient in case of big data. “We are looking for a solution that stably guarantees security even in case of an increasing number of accesses and users,” says Assistant Professor Dennis Hofheinz, who is member of the Cryptography and Security Working Group at the KIT.

The increasingly growing social networks, such as Facebook or Twitter, produce large data accumulations. At the same time, these data are of high economic and political value. The project “Clustering in Social Online Networks” of Professor Dorothea Wagner (KIT) and Professor Ulrik Brandes (Universität Konstanz) starts at this point. With the help of new algorithms, the development of online communities in social networks shall be reproduced.

To search a big volume of data e.g. on the internet, a functioning tool, such as a good search machine, is indispensable. “The search machines used today can be further improved by algorithms of increased efficiency,” Professor Peter Sanders says, who also conducts research at the Institute of Theoretical Informatics. Within the framework of his project “Text Indexing for Big Data”, Sanders, together with Professor Johannes Fischer of the Technical University of Dortmund, is looking for optimization options. In particular, they plan to use many processors at the same time, while searching of data in strongly compressed form shall remain possible.

Big Data at the KIT

The topic of Big Data is of high relevance in various application scenarios. Not only science, but also users of new technologies are increasingly facing so far unknown problems. To manage these problems, the KIT works on various Big Data projects apart from SPP 1736. For instance, KIT is partner of the Helmholtz project “Large Scale Data Management and Analysis” (LSDMA). This project pools various competences in handling big data, as it covers effective acquisition, storage, distribution, analysis, visualization, and archiving of data.

In addition, the KIT has been operating the Smart Data Innovation Lab (SDIL), a platform for Big Data research, since 2014. The SDIL reaches highest performance and can be used in practice by industry and science. 

http://www.kit.edu/kit/english/pi_2014_15153.php

Monika Landgraf | AlphaGalileo

Further reports about: Algorithms Big Data SPP encoding networks processing

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>