Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Efficient Processing of Big Data on a Daily Routine Basis

10.06.2014

Computer systems today can be found in nearly all areas of life, from smartphones to smart cars to self-organized production facilities.

These computer systems supply rapidly growing data volumes. Computer science now faces the challenge of processing these huge amounts of data (big data) in a reasonable and secure manner. The new priority program “Algorithms for Big Data” (SPP 1736) funded by the German Research Foundation (DFG) is aimed at developing more efficient computing operations. The Institute of Theoretical Informatics of the Karlsruhe Institute of Technology (KIT) is involved in four of 15 partial projects of this SPP.   


By means of an algorithm, increasing networking of students on Facebook can be displayed according to their age. (Graphics: Michael Hamann, KIT)

As a result of new mobile technologies, such as smartphones or tablet PCs, use of computer systems increased rapidly in the past years. These systems produce increasing amounts of data of variable structure. However, adequate programs for processing these data are lacking. “The algorithms known so far are not designed for processing the huge data volumes associated with many problems. The new priority program is aimed at developing theoretically sound methods that can be applied in practice,” explains Assistant Professor Henning Meyerhenke, KIT.

So far, research relating to big data has focused on scientific applications, such as computer-supported simulations for weather forecasts. Now, KIT researchers are working on solutions to enhance the efficiency of computing processes, which can be applied on a daily routine basis. Examples are search queries on the internet or the structural analysis of social networks.

... more about:
»Algorithms »Big Data »SPP »encoding »networks »processing

Four KIT research groups participate in the priority program.

The priority program “Algorithms for Big Data” that is funded by the DFG for a period of six years covers several projects all over Germany. Among these projects are four of the KIT Institute of Theoretical Informatics.

The project “Rapid Inexact Combinatorial and Algebraic Solvers for Large Networks” of Assistant Professor Henning Meyerhenke addresses complex problems encountered in large networks. The tasks to be solved are motivated by biological applications. For example, individuals of a species can be networked according to the similarity of their genome and then classified. The new processes help classify the data arising with a reduced calculation expenditure. In this way, it is easier for biologists to derive new findings.

In the project “Scalable Cryptography” of Assistant Professor Dennis Hofheinz (KIT) and Professor Eike Klitz (Ruhr-Universität Bochum), work focuses on the security of big data. Cryptographic methods, such as encoding or digital signatures, guarantee security also in case of big data volumes. However, existing methods are difficult to adapt to the new tasks. The security provided by the RSA-OAEP encoding method used in conventional internet browsers, for instance, is insufficient in case of big data. “We are looking for a solution that stably guarantees security even in case of an increasing number of accesses and users,” says Assistant Professor Dennis Hofheinz, who is member of the Cryptography and Security Working Group at the KIT.

The increasingly growing social networks, such as Facebook or Twitter, produce large data accumulations. At the same time, these data are of high economic and political value. The project “Clustering in Social Online Networks” of Professor Dorothea Wagner (KIT) and Professor Ulrik Brandes (Universität Konstanz) starts at this point. With the help of new algorithms, the development of online communities in social networks shall be reproduced.

To search a big volume of data e.g. on the internet, a functioning tool, such as a good search machine, is indispensable. “The search machines used today can be further improved by algorithms of increased efficiency,” Professor Peter Sanders says, who also conducts research at the Institute of Theoretical Informatics. Within the framework of his project “Text Indexing for Big Data”, Sanders, together with Professor Johannes Fischer of the Technical University of Dortmund, is looking for optimization options. In particular, they plan to use many processors at the same time, while searching of data in strongly compressed form shall remain possible.

Big Data at the KIT

The topic of Big Data is of high relevance in various application scenarios. Not only science, but also users of new technologies are increasingly facing so far unknown problems. To manage these problems, the KIT works on various Big Data projects apart from SPP 1736. For instance, KIT is partner of the Helmholtz project “Large Scale Data Management and Analysis” (LSDMA). This project pools various competences in handling big data, as it covers effective acquisition, storage, distribution, analysis, visualization, and archiving of data.

In addition, the KIT has been operating the Smart Data Innovation Lab (SDIL), a platform for Big Data research, since 2014. The SDIL reaches highest performance and can be used in practice by industry and science. 

http://www.kit.edu/kit/english/pi_2014_15153.php

Monika Landgraf | AlphaGalileo

Further reports about: Algorithms Big Data SPP encoding networks processing

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>