Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Efficient Processing of Big Data on a Daily Routine Basis

10.06.2014

Computer systems today can be found in nearly all areas of life, from smartphones to smart cars to self-organized production facilities.

These computer systems supply rapidly growing data volumes. Computer science now faces the challenge of processing these huge amounts of data (big data) in a reasonable and secure manner. The new priority program “Algorithms for Big Data” (SPP 1736) funded by the German Research Foundation (DFG) is aimed at developing more efficient computing operations. The Institute of Theoretical Informatics of the Karlsruhe Institute of Technology (KIT) is involved in four of 15 partial projects of this SPP.   


By means of an algorithm, increasing networking of students on Facebook can be displayed according to their age. (Graphics: Michael Hamann, KIT)

As a result of new mobile technologies, such as smartphones or tablet PCs, use of computer systems increased rapidly in the past years. These systems produce increasing amounts of data of variable structure. However, adequate programs for processing these data are lacking. “The algorithms known so far are not designed for processing the huge data volumes associated with many problems. The new priority program is aimed at developing theoretically sound methods that can be applied in practice,” explains Assistant Professor Henning Meyerhenke, KIT.

So far, research relating to big data has focused on scientific applications, such as computer-supported simulations for weather forecasts. Now, KIT researchers are working on solutions to enhance the efficiency of computing processes, which can be applied on a daily routine basis. Examples are search queries on the internet or the structural analysis of social networks.

... more about:
»Algorithms »Big Data »SPP »encoding »networks »processing

Four KIT research groups participate in the priority program.

The priority program “Algorithms for Big Data” that is funded by the DFG for a period of six years covers several projects all over Germany. Among these projects are four of the KIT Institute of Theoretical Informatics.

The project “Rapid Inexact Combinatorial and Algebraic Solvers for Large Networks” of Assistant Professor Henning Meyerhenke addresses complex problems encountered in large networks. The tasks to be solved are motivated by biological applications. For example, individuals of a species can be networked according to the similarity of their genome and then classified. The new processes help classify the data arising with a reduced calculation expenditure. In this way, it is easier for biologists to derive new findings.

In the project “Scalable Cryptography” of Assistant Professor Dennis Hofheinz (KIT) and Professor Eike Klitz (Ruhr-Universität Bochum), work focuses on the security of big data. Cryptographic methods, such as encoding or digital signatures, guarantee security also in case of big data volumes. However, existing methods are difficult to adapt to the new tasks. The security provided by the RSA-OAEP encoding method used in conventional internet browsers, for instance, is insufficient in case of big data. “We are looking for a solution that stably guarantees security even in case of an increasing number of accesses and users,” says Assistant Professor Dennis Hofheinz, who is member of the Cryptography and Security Working Group at the KIT.

The increasingly growing social networks, such as Facebook or Twitter, produce large data accumulations. At the same time, these data are of high economic and political value. The project “Clustering in Social Online Networks” of Professor Dorothea Wagner (KIT) and Professor Ulrik Brandes (Universität Konstanz) starts at this point. With the help of new algorithms, the development of online communities in social networks shall be reproduced.

To search a big volume of data e.g. on the internet, a functioning tool, such as a good search machine, is indispensable. “The search machines used today can be further improved by algorithms of increased efficiency,” Professor Peter Sanders says, who also conducts research at the Institute of Theoretical Informatics. Within the framework of his project “Text Indexing for Big Data”, Sanders, together with Professor Johannes Fischer of the Technical University of Dortmund, is looking for optimization options. In particular, they plan to use many processors at the same time, while searching of data in strongly compressed form shall remain possible.

Big Data at the KIT

The topic of Big Data is of high relevance in various application scenarios. Not only science, but also users of new technologies are increasingly facing so far unknown problems. To manage these problems, the KIT works on various Big Data projects apart from SPP 1736. For instance, KIT is partner of the Helmholtz project “Large Scale Data Management and Analysis” (LSDMA). This project pools various competences in handling big data, as it covers effective acquisition, storage, distribution, analysis, visualization, and archiving of data.

In addition, the KIT has been operating the Smart Data Innovation Lab (SDIL), a platform for Big Data research, since 2014. The SDIL reaches highest performance and can be used in practice by industry and science. 

http://www.kit.edu/kit/english/pi_2014_15153.php

Monika Landgraf | AlphaGalileo

Further reports about: Algorithms Big Data SPP encoding networks processing

More articles from Information Technology:

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

25.09.2017 | Trade Fair News

Highest-energy cosmic rays have extragalactic origin

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>