Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drones can almost see in the dark

20.09.2017

UZH researchers have taught drones how to fly using an eye-inspired camera, opening the door to them performing fast, agile maneuvers and flying in low-light environments. Possible applications could include supporting rescue teams with search missions at dusk or dawn.

To fly safely, drones need to know their precise position and orientation in space at all times. While commercial drones solve this problem using GPS, this only works outdoors, and is not very reliable, especially in urban environments.


Drone with an eye-inspired camera.

Image: UZH


Unlike their conventional counterparts, event cameras only report changes in brightness for each pixel.

Image: UZH

Furthermore, the conventional cameras mounted on drones work only when there is a high amount of light available, and the drone’s speed has to be limited otherwise the resulting image is motion-blurred and cannot be used by computer vision algorithms. To solve this problem, professional drones use sensors that are elaborate, expensive, and bulky, such as laser scanners.

First combination of artificial intelligence and robotics

A group of researchers from the University of Zurich and the Swiss research consortium NCCR Robotics has now developed an innovative alternative approach, enabling drones to fly in a wide range of conditions using an eye-inspired camera that can easily cope with high-speed motion.

It can even see in the dark much more effectively than the conventional cameras currently used by all commercial drones. “This research is the first of its kind in the fields of artificial intelligence and robotics, and will soon enable drones to fly autonomously and faster than ever, including in low-light environments,” says Prof. Davide Scaramuzza, Director of the Robotics and Perception Group at UZH. He and his team have already taught drones to use their onboard cameras to infer their position and orientation in space.

Camera captures light changes for each pixel

Event cameras, which were invented at UZH together with ETH Zurich, do not need to capture full light on the entire bio-inspired retina in order to have a clear picture. Unlike their conventional counterparts, they only report changes in brightness for each pixel, ensuring perfectly sharp vision even during fast motion or in low-light environments. The UZH researchers have also de-signed new software able to efficiently process the output from such cameras, harnessing this to enable autonomous flight at higher speeds and in lower light than currently possible with com-mercial drones.

Drones equipped with an event camera and the software designed by the Swiss researchers could assist search and rescue teams in scenarios where conventional drones would be of no use – for example on missions at dusk or dawn or when there is too little light for normal cameras to work. They would also be able to fly faster in disaster areas, where time is critical in saving survivors.

Prototype ready for the future

“There is still a lot of work to be done before these drones can be deployed in the real world since the event camera used for our research is an early prototype. We have yet to prove that our soft-ware also works reliably outdoors,” says PhD Student Henri Rebecq. And Professor Scaramuzza adds: “We think this is achievable, however, and our recent work has already demonstrated that combining a standard camera with an event-based camera improves the accuracy and reliability of the system.”

Literature:
Antoni Rosinol Vidal, Henri Rebecq, Timo Horstschaefer, Davide Scaramuzza. Hybrid, Frame and Event-based Visual Inertial Odometry for Robust, Autonomous Navigation of Quadrotors. IEEE Robotics and Automation Letters, September 19, 2017.

Video UZH Flying Robots: https://www.youtube.com/watch?time_continue=1&v=GZ1L9gXPfvc

Melanie Nyfeler | Universität Zürich
Further information:
http://www.media.uzh.ch/en/Press-Releases/2017/Drones-in-the-dark.html

Further reports about: ETH ETH Zurich GPs Robotics Robots UZH laser scanners sharp vision

More articles from Information Technology:

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

nachricht Seeing the next dimension of computer chips
11.10.2017 | Osaka University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>