Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DMCii pioneers new framework for satellite imaging quality control

17.09.2008
Remote sensing solution provider DMCii’s Chief Scientist, Dr Steve Mackin, has pioneered a new approach for deriving quality control indicators from Disaster Monitoring Constellation data.

The new framework, which is being implemented by DMCii, holds great potential for quality control and consistency in multi-source imaging projects such as the European Global Monitoring for Environment and Security (GMES).

Dr Mackin commented: “This has never been done before and its application holds great potential for projects where imaging is sourced from multiple providers and satellites. As a GMES contributor, DMCii has begun implementing this new quality control framework within the Disaster Monitoring Constellation to validate it for wider use.”

The European Space Agency (ESA) has expressed interest in the techniques that Dr Mackin presented in his role as one of the UK’s representatives in the Working Group for Constellation Calibration on the Committee on Earth Observation Satellites (CEOS). The first dedicated GMES satellites, Sentinel 2 and Sentinel 3, will demonstrate (at least in part) the new framework as a quality control measure for GMES.

From research conducted with the National Physics Laboratory it was clear that making extra quality information available to describe imaging products would be of significant benefit to imaging experts. The new framework provides a clearer quality statement with defined error budgets at each stage and hence identifies low quality data before it can be issued. The traceability of data is also improved, enabling the rapid identification of the processing area at fault.

Dr Mackin states that the proposed methodology holds many benefits for imaging users: “It makes sense for any customer to request standardized quality control information from imaging suppliers. Only then can you be sure of the quality of your end product and its fitness for purpose. It also allows users to compare data across image providers in a fast and simple manner and determine who meets the user’s requirements at the lowest cost – hence saving time and money for the end-user”.

The Disaster Monitoring Constellation (DMC) is a unique cooperation between partners that own satellites and share their data. DMCii coordinates the constellation to provide high quality commercial imaging services and rapid disaster monitoring programmes. The DMC’s imaging capacity is set to grow to more than 10 million sq km per day by the end of 2008 with the addition of new satellites, UK-DMC2 and Deimos-1, which share a 20metre 600km swath imaging capability. The UK-DMC2 satellite will also offer a direct downlink service to X-band groundstations.

Last year, DMCii imaged 38 European countries for GMES in the 6 months between April and October 2007 as a GMES contributing mission. DMCii delivered precisely positioned data in each national map projection. This was the first time that the whole of Europe had been successfully imaged at high resolution in a single year.

The Global Monitoring for Environment and Security (GMES) programme is led by the European Commission with the aim of delivering environment and security services. It is the European response to the ever-increasing demands of effective environmental policies. GMES is the European contribution to the Global Earth Observation System of Systems (GEOSS).

Robin Wolstenholme | alfa
Further information:
http://www.ballard.co.uk/dmcii

More articles from Information Technology:

nachricht Gecko adhesion technology moves closer to industrial uses
13.12.2017 | Georgia Institute of Technology

nachricht New silicon structure opens the gate to quantum computers
12.12.2017 | Princeton University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>