Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


When disaster strikes

When disaster threatens, the first hours are crucial. European researchers have developed an automated system to provide early detection, forecasting, and warning of natural disasters such as floods and wildfires.

Floods, forest fires, and other natural disasters take lives, harm the environment, and cause billions of euros of damage every year – €50 billion worldwide in 2007 alone.

The EU-funded programme SCIER (Sensor and Computing Infrastructure for Environmental Risks) took on the challenge of developing a state-of-the-art automated system to detect disasters in the making, forecast how an emergency is likely to unfold, alert authorities, and get them the information they need to respond effectively.

“We can provide public authorities with real data and predictions in real time,” says Sotiris Kanellopoulos, the project’s technical coordinator. “So the public services can coordinate their forces and manage the emergency in an efficient way, and people who live close to forests or rivers can protect themselves.”

The first level of the group’s solution is to deploy networks of ground-based sensors such as video cameras, meteorological instruments, and river-level gauges in high-risk areas, especially the “urban-rural interface”, where homes and businesses lie close to undeveloped terrain.

From raw data to realistic forecasts

The ground-based sensors are linked wirelessly into what the researchers call a local area control unit. This level of the system structures and compares the raw data, for example checking to see if a temperature spike at one sensor is matched by similar changes at nearby sensors.

“The system should be able to understand when there is a false measurement,” says Kanellopoulos, “so it can filter out what is unrealistic and not trigger a false alarm.”

When the local area control unit decides a threat is real, it activates the next level of SCIER’s computational armamentarium to forecast how the emergency is likely to develop during the crucial first hours.

“We don’t claim that we can simulate a fire disaster for days,” says Kanellopoulos. “But we can simulate it for the next few hours.”

The researchers have implemented sophisticated mathematical models of how natural disasters unfold. Those models include detailed information about the local geography, plus real-time sensor data concerning wind, rainfall, temperature, and other variables.

They found that, in order to produce meaningful forecasts, they need to generate multiple simulations of a disaster. Only then can their models provide authorities with accurate and useful information, such as where a wildfire is most likely to threaten homes.

“We generate different scenarios using different wind speeds, directions, and other relevant parameters,” says Kanellopoulos. “Then we score each scenario and try to filter out scenarios that are unrealistic.”

The system uses the most likely simulations to generate detailed maps that authorities can use to manage the emergency.

“The simulations are visualised on a reference map, so the public authorities can see in a very direct way what is going to happen in the area for the next two or three hours,” says Kanellopoulos.

Generating these complex simulations in real time demands enormous amounts of computing power. SCIER relies on the GRID to provide that computational clout.

The GRID, sometimes known as the next-generation internet, is a dedicated network that links thousands of computers via a fibre-optic network that is up to 10,000 times faster than the internet. It allows researchers to perform calculations that could not be done otherwise.

“Because we need to run a vast amount of calculations in real time, I don’t believe that a single core computer could compete with the GRID,” says Kanellopoulos.

First field trials

SCIER, funded by the EU’s Sixth Framework Programme for research, already has a functioning trial network in the Czech Republic, aimed at managing floods.

The next trial is taking place this summer near Athens, Greece. It will test a sensor network, local area control unit, and higher-level computational resources for detecting and controlling forest fires.

A third trial is scheduled to take place in France.

Kanellopoulos says that the group’s greatest technical challenge was in combining research and technological capabilities from different areas, for example ways of generating and presenting geographic information using the GRID.

However, he adds, SCIER’s greatest achievement will be seeing the system applied “on the ground” to help authorities protect lives and property from natural disasters.

“It’s the result that is important – an overview of the event so public services can coordinate their forces and manage an emergency in a more efficient way.”

Christian Nielsen | alfa
Further information:

More articles from Information Technology:

nachricht Fraunhofer FIT joins Facebook's Telecom Infra Project
25.10.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Stanford researchers create new special-purpose computer that may someday save us billions
21.10.2016 | Stanford University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>