Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New device to improve transistor quality

05.11.2008
A new configurable chip which can correct faults in newly- manufactured transistors and can be implemented in mainstream devices such as mobile phones and computers, has been developed by engineers at the University of Southampton.

In a paper just published in Electronics Letters, Dr Peter Wilson and Dr Reuben Wilcock from the University's School of Electronics and Computer Science (ECS), describe the Configurable Analogue Transistor (CAT) which he and his team have developed, and for which they have a patent pending.

The CAT approach can be applied to batches of transistors which in testing after manufacture prove to have an unacceptably high variability.

According to Dr Wilson, the manufacturing process for deep submicron technologies is currently very expensive, with the cost of failed devices running into huge figures. Designers create new chip designs and generally simulate how they will perform. When the silicon wafers are produced they will then undergo rigorous electrical testing to ensure that they are working. It is at this point that the designer often realises that some of the chips do not work, which creates a problem of reduced yield, i.e. the number of chips which work out of a batch reduces. This has been an increasing problem for Integrated Circuit designers over the last few years as process technology dimensions have become increasingly small, and the corresponding variability of devices worsened.

‘One of the biggest challenges we face when shrinking devices in these new technology nodes is that there is increasing variability in the resulting devices and this is causing unacceptably poor yields in the circuits being produced – particularly in analogue and mixed signal devices where performance is at a premium,' said Dr Wilson. 'Now with CAT, we can take whole batches of chips and tighten their performance characteristics resulting in massive improvements in yield. Improvements in variability of up to 80 percent can be achieved using this approach.’

According to Dr Wilson, the CAT technique can also be applied to existing products to improve their performance and longevity.

‘As technology changes over time, the CAT technique allows us to reconfigure devices so that products continue to work,’ said Dr Wilson. ‘For example, remote circuits in satellites and sensor devices can be “reprogrammed” and effectively recalibrated to take account of changing characteristics over time and environmental conditions.’

A copy of Dr’s Wilson and Wilcock paper can be accessed at: http://eprints.ecs.soton.ac.uk/16667/

Helene Murphy | alfa
Further information:
http://eprints.ecs.soton.ac.uk/16667/
http://www.soton.ac.uk

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>