New device could bring optical information processing

The “passive optical diode” is made from two tiny silicon rings measuring 10 microns in diameter, or about one-tenth the width of a human hair. Unlike other optical diodes, it does not require external assistance to transmit signals and can be readily integrated into computer chips.

The diode is capable of “nonreciprocal transmission,” meaning it transmits signals in only one direction, making it capable of information processing, said Minghao Qi (pronounced Chee), an associate professor of electrical and computer engineering at Purdue University.

“This one-way transmission is the most fundamental part of a logic circuit, so our diodes open the door to optical information processing,” said Qi, working with a team also led by Andrew Weiner, Purdue's Scifres Family Distinguished Professor of Electrical and Computer Engineering.

The diodes are described in a paper to be published online Thursday (Dec. 22) in the journal Science. The paper was written by graduate students Li Fan, Jian Wang, Leo Varghese, Hao Shen and Ben Niu, research associate Yi Xuan, and Weiner and Qi.

Although fiberoptic cables are instrumental in transmitting large quantities of data across oceans and continents, information processing is slowed and the data are susceptible to cyberattack when optical signals must be translated into electronic signals for use in computers, and vice versa.

“This translation requires expensive equipment,” Wang said. “What you'd rather be able to do is plug the fiber directly into computers with no translation needed, and then you get a lot of bandwidth and security.”

Electronic diodes constitute critical junctions in transistors and help enable integrated circuits to switch on and off and to process information. The new optical diodes are compatible with industry manufacturing processes for complementary metal-oxide-semiconductors, or CMOS, used to produce computer chips, Fan said.

“These diodes are very compact, and they have other attributes that make them attractive as a potential component for future photonic information processing chips,” she said.

The new optical diodes could make for faster and more secure information processing by eliminating the need for this translation. The devices, which are nearly ready for commercialization, also could lead to faster, more powerful supercomputers by using them to connect numerous processors together.

“The major factor limiting supercomputers today is the speed and bandwidth of communication between the individual superchips in the system,” Varghese said. “Our optical diode may be a component in optical interconnect systems that could eliminate such a bottleneck.”

Infrared light from a laser at telecommunication wavelength goes through an optical fiber and is guided by a microstructure called a waveguide. It then passes sequentially through two silicon rings and undergoes “nonlinear interaction” while inside the tiny rings. Depending on which ring the light enters first, it will either pass in the forward direction or be dissipated in the backward direction, making for one-way transmission. The rings can be tuned by heating them using a “microheater,” which changes the wavelengths at which they transmit, making it possible to handle a broad frequency range.

The work was performed in laboratories operated by the Birck Nanotechnology Center in Purdue's Discovery Park and by the School of Electrical and Computer Engineering. It was funded by the U.S. Defense Threat Reduction Agency, Air Force Office of Scientific Research, National Science Foundation and the National Institutes of Health. Simulation work was carried out through the Network for Computational Nanotechnology (NCN), with resources available at www.nanohub.org.

Related websites:

Minghao Qi:
https://engineering.purdue.edu/ECE/People/profile?resource_id=8861
Andrew Weiner:
http://cobweb.ecn.purdue.edu/~amw/
Ultrafast Optics and Optical Fiber Communications Laboratory:
http://cobweb.ecn.purdue.edu/~fsoptics/
IMAGE CAPTION:
This illustration shows a new “all-silicon passive optical diode,” a device small enough to fit millions on a computer chip that could lead to faster, more powerful information processing and supercomputers. The device has been developed by Purdue University researchers. (Birck Nanotechnology Center, Purdue University)

A publication-quality image is available at http://news.uns.purdue.edu/images/2011/qi-diode.jpg

Abstract on the research in this release can be found at: http://www.purdue.edu/newsroom/research/2011/111222QiDiode.html

Media Contact

Emil Venere EurekAlert!

More Information:

http://www.purdue.edu

All latest news from the category: Information Technology

Here you can find a summary of innovations in the fields of information and data processing and up-to-date developments on IT equipment and hardware.

This area covers topics such as IT services, IT architectures, IT management and telecommunications.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors