Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New device could bring optical information processing

23.12.2011
Researchers have created a new type of optical device small enough to fit millions on a computer chip that could lead to faster, more powerful information processing and supercomputers.

The "passive optical diode" is made from two tiny silicon rings measuring 10 microns in diameter, or about one-tenth the width of a human hair. Unlike other optical diodes, it does not require external assistance to transmit signals and can be readily integrated into computer chips.

The diode is capable of "nonreciprocal transmission," meaning it transmits signals in only one direction, making it capable of information processing, said Minghao Qi (pronounced Chee), an associate professor of electrical and computer engineering at Purdue University.

"This one-way transmission is the most fundamental part of a logic circuit, so our diodes open the door to optical information processing," said Qi, working with a team also led by Andrew Weiner, Purdue's Scifres Family Distinguished Professor of Electrical and Computer Engineering.

The diodes are described in a paper to be published online Thursday (Dec. 22) in the journal Science. The paper was written by graduate students Li Fan, Jian Wang, Leo Varghese, Hao Shen and Ben Niu, research associate Yi Xuan, and Weiner and Qi.

Although fiberoptic cables are instrumental in transmitting large quantities of data across oceans and continents, information processing is slowed and the data are susceptible to cyberattack when optical signals must be translated into electronic signals for use in computers, and vice versa.

"This translation requires expensive equipment," Wang said. "What you'd rather be able to do is plug the fiber directly into computers with no translation needed, and then you get a lot of bandwidth and security."

Electronic diodes constitute critical junctions in transistors and help enable integrated circuits to switch on and off and to process information. The new optical diodes are compatible with industry manufacturing processes for complementary metal-oxide-semiconductors, or CMOS, used to produce computer chips, Fan said.

"These diodes are very compact, and they have other attributes that make them attractive as a potential component for future photonic information processing chips," she said.

The new optical diodes could make for faster and more secure information processing by eliminating the need for this translation. The devices, which are nearly ready for commercialization, also could lead to faster, more powerful supercomputers by using them to connect numerous processors together.

"The major factor limiting supercomputers today is the speed and bandwidth of communication between the individual superchips in the system," Varghese said. "Our optical diode may be a component in optical interconnect systems that could eliminate such a bottleneck."

Infrared light from a laser at telecommunication wavelength goes through an optical fiber and is guided by a microstructure called a waveguide. It then passes sequentially through two silicon rings and undergoes "nonlinear interaction" while inside the tiny rings. Depending on which ring the light enters first, it will either pass in the forward direction or be dissipated in the backward direction, making for one-way transmission. The rings can be tuned by heating them using a "microheater," which changes the wavelengths at which they transmit, making it possible to handle a broad frequency range.

The work was performed in laboratories operated by the Birck Nanotechnology Center in Purdue's Discovery Park and by the School of Electrical and Computer Engineering. It was funded by the U.S. Defense Threat Reduction Agency, Air Force Office of Scientific Research, National Science Foundation and the National Institutes of Health. Simulation work was carried out through the Network for Computational Nanotechnology (NCN), with resources available at www.nanohub.org.

Related websites:

Minghao Qi:
https://engineering.purdue.edu/ECE/People/profile?resource_id=8861
Andrew Weiner:
http://cobweb.ecn.purdue.edu/~amw/
Ultrafast Optics and Optical Fiber Communications Laboratory:
http://cobweb.ecn.purdue.edu/~fsoptics/
IMAGE CAPTION:
This illustration shows a new "all-silicon passive optical diode," a device small enough to fit millions on a computer chip that could lead to faster, more powerful information processing and supercomputers. The device has been developed by Purdue University researchers. (Birck Nanotechnology Center, Purdue University)

A publication-quality image is available at http://news.uns.purdue.edu/images/2011/qi-diode.jpg

Abstract on the research in this release can be found at: http://www.purdue.edu/newsroom/research/2011/111222QiDiode.html

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>