Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Developing an innovative design platform for future Network-on-Chip

07.06.2010
European collaborative research project called NaNoC has begun to develop an innovative design platform for future Network-on-Chip (NoC) based multi-core systems

• The NaNoC project aims at developing an innovative design platform for future Network-on-Chip (NoC) based multi-core systems.



• The project is being carried out by a consortium, led by the Parallel Architecture’s Group (GAP) at Technical University of Valencia

Multi-core Systems-on-Chip (SoCs) are becoming ubiquitous in multiple industrial domains, from consumer electronics to automotive, from telecommunications to industrial automation. However, numerous challenges lie ahead, especially regarding the design complexity of such platforms and the physical-level issues as fabrication is further miniaturized. On the other hand, there is today wide consensus on the inherent performance scalability limitations of state-of-the-art interconnect fabrics, ranging from shared busses to bridged busses, all the way to the latest multi-layer communication architectures.

With respect to this, the interconnect fabric, increasingly viewed as the key limiter for effective system integration, is becoming one of the major challenges in the design of on-chip multi-core architectures. To solve this, Networks-on-chip (NoCs) have been proposed as the communication backbone for large-scale integrated systems. They can effectively cope with the productivity gap by providing parallelism through the replication of many identical blocks placed each in a tile of a regular array fabric.

The NaNoC project aims at developing an innovative design platform for future Network-on-Chip (NoC) based multi-core systems. This NaNoC design platform intends to master the design complexity of advanced microelectronic systems by enabling strict component oriented architectural design. A compositional approach to NoC design in future multi-core chips is out of the reach of current design methods and tools due to new design constraints.

Above all, the NaNoC design platform fosters the tight cooperation between system research, circuit design and process development by means of a silicon-aware decision making at each layer of the design hierarchy. In this direction, NaNoC not only provides a cross-layer approach to tackle composability challenges (e.g., physical design techniques for enhanced reliability combined with architecture-level techniques for fault containment), but also defines an exchange format for interoperability between design tools for cross-layer optimization. Interoperability between developed NoC design methods/prototype tools and mainstream design toolflows will also be pursued.

The NaNoC (Nanoscale Silicon-Aware Network-on-Chip Design Platform) started on January 2010, funded by the European Union's Seventh Framework Program (2007-2013). The project is being carried out by a consortium, led by the Parallel Architecture’s Group (GAP) at Technical University of Valencia (Valencia, Spain). About 2.9 million euro (about $4.6 million) of the budget is being provided by European tax payer through the offices of the European Commission and the rest by the project partners including the Technical University of Valencia (Spain), University of Ferrara (Italy), Simula Research Labs (Norway), Infineon Technologies AG (Germany), Teklatech A/S (Denmark), iNoCs SàRL (Switzerland), and Lantiq (Germany).

Project website: http://www.nanoc-project.eu

Luis Zurano Conches
Science Journalist
Universidad Politécnica de Valencia
actualidadi+d@ctt.upv.es
647 422 347

Luis Zurano Conches | Universidad Politécnica de Valen
Further information:
http://www.upv.es
http://www.nanoc-project.eu

More articles from Information Technology:

nachricht Drones that drive
27.06.2017 | Massachusetts Institute of Technology, CSAIL

nachricht Ahead of the Curve
27.06.2017 | Institute of Science and Technology Austria

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy

28.06.2017 | Awards Funding

Predicting eruptions using satellites and math

28.06.2017 | Earth Sciences

Extremely fine measurements of motion in orbiting supermassive black holes

28.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>