Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Developing an innovative design platform for future Network-on-Chip

07.06.2010
European collaborative research project called NaNoC has begun to develop an innovative design platform for future Network-on-Chip (NoC) based multi-core systems

• The NaNoC project aims at developing an innovative design platform for future Network-on-Chip (NoC) based multi-core systems.



• The project is being carried out by a consortium, led by the Parallel Architecture’s Group (GAP) at Technical University of Valencia

Multi-core Systems-on-Chip (SoCs) are becoming ubiquitous in multiple industrial domains, from consumer electronics to automotive, from telecommunications to industrial automation. However, numerous challenges lie ahead, especially regarding the design complexity of such platforms and the physical-level issues as fabrication is further miniaturized. On the other hand, there is today wide consensus on the inherent performance scalability limitations of state-of-the-art interconnect fabrics, ranging from shared busses to bridged busses, all the way to the latest multi-layer communication architectures.

With respect to this, the interconnect fabric, increasingly viewed as the key limiter for effective system integration, is becoming one of the major challenges in the design of on-chip multi-core architectures. To solve this, Networks-on-chip (NoCs) have been proposed as the communication backbone for large-scale integrated systems. They can effectively cope with the productivity gap by providing parallelism through the replication of many identical blocks placed each in a tile of a regular array fabric.

The NaNoC project aims at developing an innovative design platform for future Network-on-Chip (NoC) based multi-core systems. This NaNoC design platform intends to master the design complexity of advanced microelectronic systems by enabling strict component oriented architectural design. A compositional approach to NoC design in future multi-core chips is out of the reach of current design methods and tools due to new design constraints.

Above all, the NaNoC design platform fosters the tight cooperation between system research, circuit design and process development by means of a silicon-aware decision making at each layer of the design hierarchy. In this direction, NaNoC not only provides a cross-layer approach to tackle composability challenges (e.g., physical design techniques for enhanced reliability combined with architecture-level techniques for fault containment), but also defines an exchange format for interoperability between design tools for cross-layer optimization. Interoperability between developed NoC design methods/prototype tools and mainstream design toolflows will also be pursued.

The NaNoC (Nanoscale Silicon-Aware Network-on-Chip Design Platform) started on January 2010, funded by the European Union's Seventh Framework Program (2007-2013). The project is being carried out by a consortium, led by the Parallel Architecture’s Group (GAP) at Technical University of Valencia (Valencia, Spain). About 2.9 million euro (about $4.6 million) of the budget is being provided by European tax payer through the offices of the European Commission and the rest by the project partners including the Technical University of Valencia (Spain), University of Ferrara (Italy), Simula Research Labs (Norway), Infineon Technologies AG (Germany), Teklatech A/S (Denmark), iNoCs SàRL (Switzerland), and Lantiq (Germany).

Project website: http://www.nanoc-project.eu

Luis Zurano Conches
Science Journalist
Universidad Politécnica de Valencia
actualidadi+d@ctt.upv.es
647 422 347

Luis Zurano Conches | Universidad Politécnica de Valen
Further information:
http://www.upv.es
http://www.nanoc-project.eu

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>