Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Developing an innovative design platform for future Network-on-Chip

European collaborative research project called NaNoC has begun to develop an innovative design platform for future Network-on-Chip (NoC) based multi-core systems

• The NaNoC project aims at developing an innovative design platform for future Network-on-Chip (NoC) based multi-core systems.

• The project is being carried out by a consortium, led by the Parallel Architecture’s Group (GAP) at Technical University of Valencia

Multi-core Systems-on-Chip (SoCs) are becoming ubiquitous in multiple industrial domains, from consumer electronics to automotive, from telecommunications to industrial automation. However, numerous challenges lie ahead, especially regarding the design complexity of such platforms and the physical-level issues as fabrication is further miniaturized. On the other hand, there is today wide consensus on the inherent performance scalability limitations of state-of-the-art interconnect fabrics, ranging from shared busses to bridged busses, all the way to the latest multi-layer communication architectures.

With respect to this, the interconnect fabric, increasingly viewed as the key limiter for effective system integration, is becoming one of the major challenges in the design of on-chip multi-core architectures. To solve this, Networks-on-chip (NoCs) have been proposed as the communication backbone for large-scale integrated systems. They can effectively cope with the productivity gap by providing parallelism through the replication of many identical blocks placed each in a tile of a regular array fabric.

The NaNoC project aims at developing an innovative design platform for future Network-on-Chip (NoC) based multi-core systems. This NaNoC design platform intends to master the design complexity of advanced microelectronic systems by enabling strict component oriented architectural design. A compositional approach to NoC design in future multi-core chips is out of the reach of current design methods and tools due to new design constraints.

Above all, the NaNoC design platform fosters the tight cooperation between system research, circuit design and process development by means of a silicon-aware decision making at each layer of the design hierarchy. In this direction, NaNoC not only provides a cross-layer approach to tackle composability challenges (e.g., physical design techniques for enhanced reliability combined with architecture-level techniques for fault containment), but also defines an exchange format for interoperability between design tools for cross-layer optimization. Interoperability between developed NoC design methods/prototype tools and mainstream design toolflows will also be pursued.

The NaNoC (Nanoscale Silicon-Aware Network-on-Chip Design Platform) started on January 2010, funded by the European Union's Seventh Framework Program (2007-2013). The project is being carried out by a consortium, led by the Parallel Architecture’s Group (GAP) at Technical University of Valencia (Valencia, Spain). About 2.9 million euro (about $4.6 million) of the budget is being provided by European tax payer through the offices of the European Commission and the rest by the project partners including the Technical University of Valencia (Spain), University of Ferrara (Italy), Simula Research Labs (Norway), Infineon Technologies AG (Germany), Teklatech A/S (Denmark), iNoCs SàRL (Switzerland), and Lantiq (Germany).

Project website:

Luis Zurano Conches
Science Journalist
Universidad Politécnica de Valencia
647 422 347

Luis Zurano Conches | Universidad Politécnica de Valen
Further information:

More articles from Information Technology:

nachricht Next Generation Cryptography
20.03.2018 | Fraunhofer-Institut für Sichere Informationstechnologie SIT

nachricht TIB’s Visual Analytics Research Group to develop methods for person detection and visualisation
19.03.2018 | Technische Informationsbibliothek (TIB)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

Don't Give the Slightest Chance to Toxic Elements in Medicinal Products

23.03.2018 | Life Sciences

Sensitive grip

23.03.2018 | Materials Sciences

No compromises: Combining the benefits of 3D printing and casting

23.03.2018 | Process Engineering

Science & Research
Overview of more VideoLinks >>>