Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From the desk lamp to the desktop?

10.03.2010
Presentation at upcoming optical fiber communication conference in San Diego envisions future of broadband, where data is broadcast using desk lamps

In the future, getting a broadband connection might be as simple as flipping on a light switch. In fact, according to a group of researchers from Germany, the light coming from the lamps in your home could one day encode a wireless broadband signal.

"The advantage is that you'd be using light that is already there," says Jelena Vuèiæ of the Fraunhofer Institute for Telecommunications, Heinrich-Hertz-Institute in Germany. Vuèiæ and her colleagues have found a way to get the most from this synergy of illumination and information and will be presenting their findings during the Optical Fiber Communication Conference and Exposition/National Fiber Optic Engineers Conference (OFC/NFOEC), which will take place March 21-25 in San Diego.

As of now, the majority of wireless in homes and businesses is achieved through a radio-frequency WiFi connection. But WiFi has limited bandwidth, and it's unclear where to find more in the already-crowded radio spectrum. By contrast, visible-frequency wireless has all the bandwidth one could want. The signal would be generated in a room by slightly flickering all the lights in unison. No one would be bothered by this because the rate of modulation would be millions of times faster than a human eye can see. Since visible light can't go through walls like radio, there would be no unwanted interference from stray signals and less worry of outside hackers.

Incandescent and fluorescent bulbs can't flicker fast enough, so all the lights would have to be LEDs. Although commercial LEDs have a limited bandwidth of only a few MHz, Vuèiæ and her colleagues were able to increase this bandwidth ten-fold by filtering out all but the blue part of the LED spectrum. With the visible wireless system built in their lab, they downloaded data at a rate of 100 Mbit/s. They have now upgraded the system's receivers and are getting 230 Mbit/s, which is a record for visible wireless using commercial LEDs. Although state-of-the-art radio wireless can achieve comparable speeds, Vuèiæ says they should be able to double their data rate again by employing a more sophisticated modulation signal.

The OFC/NFOEC 2010 talk, "230 Mbit/s via a Wireless Visible-Light Link Based on OOK Modulation of Phosphorescent White LEDs," presentation OThH3, will take place from 9:30 - 9:45 a.m. on Thursday, March 25 in the San Diego Convention Center.

MEETING INFORMATION

The OFC/NFOEC Web site is http://www.ofcnfoec.org. In addition to comprehensive technical programming information, the site includes details on the trade show and exposition, where the latest in optical technology from more than 500 of the industry's key companies will be on display.

JOURNALIST REGISTRATION

Members of the press who wish to attend the meeting should contact Angela Stark at astark@osa.org. More information can be found online at the OFC/NFOEC media center: http://www.ofcnfoec.org/media_center/index.aspx.

About OFC/NFOEC Since 1979, the Optical Fiber Communication Conference and Exposition (OFC) has provided an annual backdrop for the optical communications field to network and share research and innovations. In 2004, OFC joined forces with the National Fiber Optic Engineers Conference (NFOEC), creating the largest and most comprehensive international event for optical communications. By combining an exposition of approximately 500 companies with a unique program of peer-reviewed technical programming and special focused educational sessions, OFC/NFOEC provides an unparalleled opportunity, reaching every audience from service providers to optical equipment manufacturers and beyond. OFC/NFOEC is managed by the Optical Society (OSA) and co-sponsored by OSA, the Institute of Electrical and Electronics Engineers/Communications Society (IEEE/ComSoc) and the IEEE Photonics Society. Acting as non-financial technical co-sponsor is Telcordia Technologies, Inc.

Angela Stark | EurekAlert!
Further information:
http://www.osa.org

More articles from Information Technology:

nachricht An AI that makes road maps from aerial images
18.04.2018 | Massachusetts Institute of Technology, CSAIL

nachricht Beyond the clouds: Networked clouds in a production setting
04.04.2018 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

Im Focus: Stronger evidence for a weaker Atlantic overturning

The Atlantic overturning – one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards – is weaker today than any time before in more than 1000 years. Sea surface temperature data analysis provides new evidence that this major ocean circulation has slowed down by roughly 15 percent since the middle of the 20th century, according to a study published in the highly renowned journal Nature by an international team of scientists. Human-made climate change is a prime suspect for these worrying observations.

“We detected a specific pattern of ocean cooling south of Greenland and unusual warming off the US coast – which is highly characteristic for a slowdown of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Improved stability of plastic light-emitting diodes

19.04.2018 | Power and Electrical Engineering

Enduring cold temperatures alters fat cell epigenetics

19.04.2018 | Life Sciences

New capabilities at NSLS-II set to advance materials science

18.04.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>