Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

De-multiplexing to the max: 640 Gbits/second

04.02.2009
New speed record for reliable reading of optical data with a compact ultra-fast component may help improve circuit design

2—Sliced light is how we communicate now. Millions of phone calls and cable television shows per second are dispatched through fibers in the form of digital zeros and ones formed by chopping laser pulses into bits.

This slicing and dicing is generally done with an electro-optic modulator, a device for allowing an electric signal to switch a laser beam on and off at high speeds (the equivalent of putting your hand in front of a flashlight). Reading that fast data stream with a compact and reliable receiver is another matter.

A new error-free speed-reading record using a compact ultra-fast component—640 Gbits/second (Gbps, or billion bits per second)—has now been established by a collaboration of scientists from Denmark and Australia, who report their results in the journal Optics Express, the Optical Society's (OSA) open-access journal.

New technology and new ways of doing business require new approaches to old procedures. Conventional readers of optical data depend on photo-detectors, electronic devices that can operate up to approximately 40 Gbps. This in itself represents a great feat of rapid reading, but it's not good enough for the higher-rate data streams being designed now. The data receiving rate has to keep up.

Sometimes to speed up data transmission several signals are multiplexed: each, with its own stream of coded data, is sent down an optical fiber at the same time. In other words, 10 parallel streams of data could each be sent at a rate of 10 Gbps and then added up to an effective stream of 100 Gbps. At the receiving end the parallel signals have to be read out in a complementary de-multiplexing process. Reliable and fast multiplexing and de-multiplexing represent a major bottleneck in linking up the electronic and photonic worlds.

In 1998 researchers in Japan created a data stream as high as 640 Gbps and were able to read it back, but the read-out apparatus relied on long lengths of special optical fiber. This particular approach is somewhat unstable. The new de-multiplexing device demonstrated at the Technical University of Denmark, by contrast, can handle the high data rate, and can do so in a stable manner. Furthermore, instead of fibers 50 meters long, they accomplish their de-multiplexing of the data stream with a waveguide only 5 cm long, an innovation developed at the Centre for Ultrahigh Bandwidth Devices for Optical Systems, or CUDOS, in Australia. Another benefit of the new device with the compact size is the potential for integration with other components to create more advanced ultra-fast functional chips. The dynamics involved in the CUDOS device could even allow for still higher data rates approaching terabits/second (Tbps, or trillion bits per second).

One of the authors of the new report, Danish scientist Leif K. Oxenløwe, says that the record speeds of de-multiplexing represented by his tiny glass microchip is a boon to circuit designers and opens the door to faster network speeds. In the near future, the Danish and Australian researchers hope to achieve 1 Tbps Ethernet capability.

Paper: "Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s Demultiplexing," Leif Oxenløwe et al, Optics Express, Vol. 17, Issue 4, Feb. 16, 2009.

About OSA

Uniting more than 70,000 professionals from 134 countries, the Optical Society (OSA) brings together the global optics community through its programs and initiatives. Since 1916 OSA has worked to advance the common interests of the field, providing educational resources to the scientists, engineers and business leaders who work in the field by promoting the science of light and the advanced technologies made possible by optics and photonics. OSA publications, events, technical groups and programs foster optics knowledge and scientific collaboration among all those with an interest in optics and photonics.

Colleen Morrison | EurekAlert!
Further information:
http://www.osa.org

More articles from Information Technology:

nachricht The TU Ilmenau develops tomorrow’s chip technology today
27.04.2017 | Technische Universität Ilmenau

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>