Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

De-multiplexing to the max: 640 Gbits/second

04.02.2009
New speed record for reliable reading of optical data with a compact ultra-fast component may help improve circuit design

2—Sliced light is how we communicate now. Millions of phone calls and cable television shows per second are dispatched through fibers in the form of digital zeros and ones formed by chopping laser pulses into bits.

This slicing and dicing is generally done with an electro-optic modulator, a device for allowing an electric signal to switch a laser beam on and off at high speeds (the equivalent of putting your hand in front of a flashlight). Reading that fast data stream with a compact and reliable receiver is another matter.

A new error-free speed-reading record using a compact ultra-fast component—640 Gbits/second (Gbps, or billion bits per second)—has now been established by a collaboration of scientists from Denmark and Australia, who report their results in the journal Optics Express, the Optical Society's (OSA) open-access journal.

New technology and new ways of doing business require new approaches to old procedures. Conventional readers of optical data depend on photo-detectors, electronic devices that can operate up to approximately 40 Gbps. This in itself represents a great feat of rapid reading, but it's not good enough for the higher-rate data streams being designed now. The data receiving rate has to keep up.

Sometimes to speed up data transmission several signals are multiplexed: each, with its own stream of coded data, is sent down an optical fiber at the same time. In other words, 10 parallel streams of data could each be sent at a rate of 10 Gbps and then added up to an effective stream of 100 Gbps. At the receiving end the parallel signals have to be read out in a complementary de-multiplexing process. Reliable and fast multiplexing and de-multiplexing represent a major bottleneck in linking up the electronic and photonic worlds.

In 1998 researchers in Japan created a data stream as high as 640 Gbps and were able to read it back, but the read-out apparatus relied on long lengths of special optical fiber. This particular approach is somewhat unstable. The new de-multiplexing device demonstrated at the Technical University of Denmark, by contrast, can handle the high data rate, and can do so in a stable manner. Furthermore, instead of fibers 50 meters long, they accomplish their de-multiplexing of the data stream with a waveguide only 5 cm long, an innovation developed at the Centre for Ultrahigh Bandwidth Devices for Optical Systems, or CUDOS, in Australia. Another benefit of the new device with the compact size is the potential for integration with other components to create more advanced ultra-fast functional chips. The dynamics involved in the CUDOS device could even allow for still higher data rates approaching terabits/second (Tbps, or trillion bits per second).

One of the authors of the new report, Danish scientist Leif K. Oxenløwe, says that the record speeds of de-multiplexing represented by his tiny glass microchip is a boon to circuit designers and opens the door to faster network speeds. In the near future, the Danish and Australian researchers hope to achieve 1 Tbps Ethernet capability.

Paper: "Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s Demultiplexing," Leif Oxenløwe et al, Optics Express, Vol. 17, Issue 4, Feb. 16, 2009.

About OSA

Uniting more than 70,000 professionals from 134 countries, the Optical Society (OSA) brings together the global optics community through its programs and initiatives. Since 1916 OSA has worked to advance the common interests of the field, providing educational resources to the scientists, engineers and business leaders who work in the field by promoting the science of light and the advanced technologies made possible by optics and photonics. OSA publications, events, technical groups and programs foster optics knowledge and scientific collaboration among all those with an interest in optics and photonics.

Colleen Morrison | EurekAlert!
Further information:
http://www.osa.org

More articles from Information Technology:

nachricht AI implications: Engineer's model lays groundwork for machine-learning device
18.08.2017 | Washington University in St. Louis

nachricht Smarter robot vacuum cleaners for automated office cleaning
15.08.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New gene catalog of ocean microbiome reveals surprises

18.08.2017 | Life Sciences

Astrophysicists explain the mysterious behavior of cosmic rays

18.08.2017 | Physics and Astronomy

AI implications: Engineer's model lays groundwork for machine-learning device

18.08.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>