Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Data World Record Falls as Computer Scientists Break Terabyte Sort Barrier

29.07.2010
Computer scientists from the University of California, San Diego broke “the terabyte barrier” – and a world record – when they sorted more than one terabyte of data (1,000 gigabytes or 1 million megabytes) in just 60 seconds.

During this 2010 “Sort Benchmark” competition – the “World Cup of data sorting” – the computer scientists from the UC San Diego Jacobs School of Engineering also tied a world record for fastest data sorting rate. They sorted one trillion data records in 172 minutes – and did so using just a quarter of the computing resources of the other record holder.

Companies looking for trends, efficiencies and other competitive advantages have turned to the kind of heavy duty data sorting that requires the hardware muscle typical of data centers. The Internet has also created many scenarios where data sorting is critical. Advertisements on Facebook pages, custom recommendations on Amazon, and up-to-the-second search results on Google all result from sorting data sets as large as multiple petabytes. A petabyte is 1,000 terabytes.

“If a major corporation wants to run a query across all of their page views or products sold, that can require a sort across a multi-petabyte dataset and one that is growing by many gigabytes every day,” said UC San Diego computer science professor Amin Vahdat, who led the project. “Companies are pushing the limit on how much data they can sort, and how fast. This is data analytics in real time,” explained Vahdat. Better sort technologies are needed, however. In data centers, sorting is often the most pressing bottleneck in many higher-level activities, noted Vahdat who directs the Center for Networked Systems (CNS) at UC San Diego.

The two new world records from UC San Diego are among the 2010 results released recently on http://sortbenchmark.org – a site run by the volunteer computer scientists from industry and academia who manage the competitions. The competitions provide benchmarks for data sorting and an interactive forum for researchers working to improve data sorting techniques.

World Records
The Indy Minute Sort and the Indy Gray Sort are the two data sorting world records the UC San Diego computer scientists won in 2010, the first year they entered the Sort Benchmark competition.
In the Indy Minute Sort, the researchers sorted 1.014 terabytes in one minute – thus breaking the minute barrier for this terabyte sort for the first time.

“We’ve set our research agenda around how to make this better…and also on how to make it more general,” said UC San Diego computer science PhD student Alex Rasmussen, the lead graduate student on the team.

The team also tied the world record for the “Indy Gray Sort” which measures sort rate per minute per 100 terabytes of data.

“We used one forth the number of computers as the previous record holder to achieve that same sort rate performance – and thus one fourth the energy, and one fourth the cooling and data center real estate,” said George Porter, a Research Scientist at the Center for Networked Systems at UC San Diego. The Center for Networked Systems is an affiliated Center of the California Institute for Telecommunications and Information Technology (Calit2).

Both world records are in the “Indy” category – meaning that the systems were designed around the specific parameters of the Sort Benchmark competition. The team is looking to generalize their results for the “Daytona” competition and for use in the real world.

“Sorting is also an interesting proxy for a whole bunch of other data processing problems. Generally, sorting is a great way to measure how fast you can read a lot of data off a set of disks, do some basic processing on it, shuffle it around a network and write it to another set of disks,” explained Rasmussen. “Sorting puts a lot of stress on the entire input/output subsystem, from the hard drives and the networking hardware to the operating system and application software.”

Balanced Systems
The data sorting challenges the computer scientists took on are quite different from the modest sorting that anyone with off the shelf database software can do by comparing two tables. One of the big differences is that data in terabyte and petabyte sorts is well beyond the memory capacity of the computers doing the sorting.

In creating their heavy duty sorting system, the computer scientists designed for speed and balance. A balanced system is one in which computing resources like memory, storage and network bandwidth are fully utilized and as few resources as possible are wasted.

1. “Our system shows what’s possible if you pay attention to efficiency – and there is still plenty of room for improvement,” said Vahdat, holder of the SAIC Chair in Engineering in the Department of Computer Science and Engineering at UC San Diego. “We asked ourselves, ‘What does it mean to build a balanced system where we are not wasting any system resources in carrying out high end computation?’” said Vahdat. “If you are idling your processors or not using all your RAM, you’re burning energy and losing efficiency.” For example, memory often uses as much or more energy than processors, but the energy consumed by memory gets less attention.

To break the terabyte barrier for the Indy Minute Sort, the computer science researchers built a system made up of 52 computer nodes. Each node is a commodity server with two quad-core processors, 24 gigabytes (GB) memory and sixteen 500 GB disks – all inter-connected by a Cisco Nexus 5020 switch. Cisco donated the switches as a part of their research engagement with the UC San Diego Center for Networked Systems. The compute cluster is hosted at Calit2.

To win the Indy Gray Sort, the computer science researchers sorted one trillion records in 10,318 seconds (about 172 minutes), yielding their world-record tying data sorting rate of 0.582 terabytes per minute per 100 terabytes of data. The winning sort system is made up of 47 computer nodes similar to those used in the minute sort.

According to wolframalpha.com, 100 terabytes of data is roughly equivalent to 4,000 single-layer Blu-Ray discs, 21,000 single-layer DVDs, 12,000 dual-layer DVDs or 142,248 CDs (assuming CDs are 703 MB).

Daniel Kane | Newswise Science News
Further information:
http://www.ucsd.edu

More articles from Information Technology:

nachricht The TU Ilmenau develops tomorrow’s chip technology today
27.04.2017 | Technische Universität Ilmenau

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>