Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Data storage: Memory that does it all

06.08.2012
Using the correct annealing temperature is key to making fast, non-volatile computer memory
Computers often do not run as fast as they should because they are constantly transferring information between two kinds of memory: a fast, volatile memory connected to the CPU, and a slow, non-volatile memory that remembers data even when switched off. A universal memory that is fast, power-efficient and non-volatile would allow new designs that avoid this bottleneck. Hao Meng and co-workers at the A*STAR Data Storage Institute have now shed new light on how to manufacture such a memory.

The researchers explored a special class of universal memory called spin-transfer torque magnetic random access memory (MRAM). A spin-transfer torque MRAM typically comprises two magnetic films that are separated by an insulating layer. The resistance between the two films is low if the magnetization direction in each film is parallel, and high if it is anti-parallel. Information is stored in the relative magnetization between the two films, and read out by measuring resistance. The magnetization directions can be switched by applying spin torque to the films’ magnetic domains (using a spin polarized electric current).

High-temperature annealing is a key step in the manufacture of an MRAM cell. Annealing alters the crystal structure of the cell materials, which in turn changes the degree of magnetization and how the cell functions. In particular, the greater change in resistance between parallel and anti-parallel magnetizations, the better the memory will function. Previous studies have shown that this resistance change increases as the annealing temperature increases, but drops if the annealing temperature rises too much.

Meng and co-workers extended this analysis to other critical MRAM characteristics. They focused on a cell made with CoFeB magnetic films, which has a natural magnetization direction outside of the plane of the film. They found that the annealing temperature that yielded maximum resistance variation exceeded the temperature necessary for maximum thermal stability. This is critical information for design engineers, who must balance these two metrics against each other.

Meng and co-workers also found that the minimum current density necessary to change the film magnetization increased with annealing temperature. A lower current is desirable for practical cell operation. The current density could be lowered by reducing the thickness of the magnetic films. However, lower thicknesses also produced an undesirable reduction in resistance variation. By explicitly demonstrating the trade-offs necessary in the design of spin torque MRAMs, the data is expected to help engineers design the next generation of these promising devices.

The A*STAR-affiliated researchers contributing to this research are from the Data Storage Institute

References:

Meng, H., Sbiaa, R., Wang, C. C., Lua, S. Y. H. & Akhtar, M. A. K. Annealing temperature window for tunneling magnetoresistance and spin torque switching in CoFeB/MgO/CoFeB perpendicular magnetic tunnel junctions. Journal of Applied Physics 110, 103915 (2011).

A*STAR Research | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>