Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Data storage: Better hard drives ready for lift-off

30.08.2013
An improved software algorithm enables more efficient modeling and development of computer hard drives of the future

Operating a hard disk drive is as complex as keeping a superfast car on the road. Read/write heads within the hard disk must process a huge amount of data at high speed. Controlling the motion of the slider housing these heads is crucial: if the slider crashes, it could destroy the hard disk.


The triangular mesh used to model the properties of a hard disk read/write head. The colors represent the pressure profile of the head; red indicates areas of high pressure.

© 2013 A*STAR Data Storage Institute

Researchers at the A*STAR Data Storage Institute (DSI) in Singapore have now developed a computational algorithm for studying the properties of the slider in a hard drive that is faster than existing algorithms1. Instead of taking days to finish, dynamic simulations using the new algorithm take only an hour, notes Wei Hua from the research team. “It greatly improves our simulation and research abilities,” he adds.

A read head typically moves across the disk surface of a hard drive at more than 7,000 revolutions per minute. The flying height of this fast-moving head is as low as 2 nanometers from the surface of the disk, some 50,000 times less than the width of a human hair. Controlling this motion is not easy, notes Hua. “The slider housing the read/write head flies on the fast-rotating hard drive disk, owing to a very thin layer of air. This air bearing pushes the slider upward, while a suspension bearing pushes the slider down toward the disk.”

Thermal effects control the distance of the head to the surface when it is being pushed down. To understand these effects, and other factors that control disk and head movements at high speed, fine-grained computer simulations are necessary.

Hua and co-workers expanded the DSI’s ABSolution air bearing simulation software for faster and more precise modeling. Instead of dividing the hard drive slider into a structured rectangular mesh typically used to aid calculations, the researchers used an unstructured triangular mesh that accurately captures the geometry of the read/write head (see image). Moreover, the algorithm better implements the dynamic effects that occur in drive heads, meaning that overall the code works faster and more efficiently.

This modeling software should prove useful in the future development of drive heads, Hua notes. Modeling the interaction between the slider and the rest of the drive is also important. “Influences such as those from the air suspension and disk effects are now being considered,” he explains. Hua and co-workers will use the improved algorithm to model slider properties that were almost impossible to simulate using the previous versions.

The A*STAR-affiliated researchers contributing to this research are from the Data Storage Institute

Journal information

Hua, W., Yu, S., Zhou, W. & Myo, K. S. A fast implicit algorithm for time-dependent dynamic simulations of air bearing sliders. Journal of Tribology 134, 031901 (2012).

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6729
http://www.researchsea.com

More articles from Information Technology:

nachricht Information integration and artificial intelligence for better diagnosis and therapy decisions
24.05.2017 | Fraunhofer MEVIS - Institut für Bildgestützte Medizin

nachricht World's thinnest hologram paves path to new 3-D world
18.05.2017 | RMIT University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>