Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Data storage: Going with the grain

26.10.2012
Reducing information stored in magnetic thin films to the physical size of single grains could improve computer hard drives

Despite the increasing competition from alternative technologies such as solid-state drives, magnetic disks remain an important data-storage technology. They are not only reliable and inexpensive, but their storage density has potential for even further improvement.


Even more data is set to be packed into the magnetic thin films of computer hard drives, thanks to modeling research at A*STAR. © Stockbyte/Thinkstock

One method under current investigation is storing each data bit in a single magnetic grain of the thin film of the recording medium, rather than in several grains as in conventional hard drives. Storage in single grains only would increase stability and reduce the magnetic fields required to write bits.

By modeling write processes in hard disks, Melissa Chua and her co-workers at the A*STAR Data Storage Institute, Singapore, have demonstrated how this is possible in practice. “The hope is that such a grain-based magnetic recording can extend storage densities by an order of magnitude, to achieve ten terabits per square inch,” she says.

Thin magnetic films for data storage coat the top layer of plastic films in hard-disk drives and consist of many neighboring nanometer-sized grains. As storage density of magnetic films has increased over the years, the surface area used for storage per bit is now comparable to the size of these grains.

Achieving single-grain storage requires a solid understanding of the write processes. Two theoretical models are available to describe these processes. One is an analytical model that uses a simplified description of the magnetic fields within the grains and within the write head of the hard disk. This model achieves fast and easy-to-implement modeling of the recording process, Chua notes.

The second model is a statistical approach that uses tabulated values of parameters that detail the magnetic orientation switching process when information is written to the hard disk. These parameters are derived from detailed simulations of the magnetic fields in the grains and from the computer hard drive write head. From these, the researchers produced a probability for a grain to switch under given circumstances. This detailed approach is more accurate, but also more time intensive than the analytical approach.

Chua and her co-workers successfully applied both models to the grain-based storage process. They simulated the switching of single grains with both methods and then compared their individual performance. By adjusting relevant process parameters for both models, they achieved good agreement between them. Having shown the suitability of both models, choosing which model to use depends on specifics, such as the desired accuracy. Either way, Chua says, “Both models enable the system-level testing of future magnetic recording technologies.”
The A*STAR-affiliated researchers contributing to this research are from the Data Storage Institute

References

Chua, M., Elidrissi, M. R., Eason, K., Zhang, S. H., Qin, Z. L. et al. Comparing analytical, micromagnetic and statistical channel models at 4 Tcbpsi patterned media recording. IEEE Transactions on Magnetics 48, 1826–1832 (2012).

A*STAR Research | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Information Technology:

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Smart Manual Workstations Deliver More Flexible Production
04.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>