Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Data storage: A fast and loose approach improves memory

An unconventional design for a nanoscale memory device uses a freely moving mechanical shuttle to improve performance

A loose and rattling part in your cell phone is generally a cause for concern. Like most other electronic devices, your phone works by moving electrons through fixed circuit pathways. If electrons are not sufficiently contained within these pathways, the efficiency and speed of a device decrease.

However, as the miniature components inside electronic devices shrink with each generation, electrons become harder to contain. Now, a research team led by Vincent Pott at the A*STAR Institute of Microelectronics, Singapore, has designed a memory device using a loose and moving part that actually enhances performance1.

The loose part is a tiny metal disk, or shuttle, about 300 nanometers thick and 2 micrometers long, and lies inside a roughly cylindrical metal cage. Because the shuttle is so small, gravity has little effect on it. Instead, the forces of adhesion between the shuttle and its metal cage determine its position. When stuck to the top of its cage, the shuttle completes an electrical circuit between two electrodes, causing current to flow. When it is at the bottom of the cage, the circuit is broken and no current flows. The shuttle can be moved from top to bottom by applying a voltage to a third electrode, known as a gate, underneath the cage.

Pott and co-workers suggested using this binary positioning to encode digital information. They predicted that the forces of adhesion would keep the shuttle in place even when the power is off, allowing the memory device to retain information for long periods of time. In fact, the researchers found that high temperature — one of the classic causes of electronic memory loss — should actually increase the duration of data retention by softening the metal that makes up the shuttle memory's disk and cage, thereby strengthening adhesion. The ability to operate in hot environments is a key requirement for military and aerospace applications.

The untethered shuttle also takes up less area than other designs and is not expected to suffer from mechanical fatigue because it avoids the use of components that need to bend or flex — such as the cantilevers used in competing mechanical memory approaches. In a simulation, Pott and co-workers found that the shuttle memory should be able to switch at speeds in excess of 1 megahertz.

The next steps, the researchers say, include designing arrays of the devices and analyzing fabrication parameters in detail. If all goes well, their novel device could compete head-to-head with the industry-standard FLASH memory.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Microelectronics

Pott, V., Li, C. G., Vaddi, R., Tsai, J. M.-L. & Kim, T. T. The shuttle nanoelectromechanical nonvolatile memory. IEEE Transactions on Electron Devices 59, 1137–1143 (2012).

A*STAR Research | Research asia research news
Further information:

More articles from Information Technology:

nachricht Fraunhofer FIT joins Facebook's Telecom Infra Project
25.10.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Stanford researchers create new special-purpose computer that may someday save us billions
21.10.2016 | Stanford University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>