Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Data storage: A fast and loose approach improves memory

21.12.2012
An unconventional design for a nanoscale memory device uses a freely moving mechanical shuttle to improve performance

A loose and rattling part in your cell phone is generally a cause for concern. Like most other electronic devices, your phone works by moving electrons through fixed circuit pathways. If electrons are not sufficiently contained within these pathways, the efficiency and speed of a device decrease.

However, as the miniature components inside electronic devices shrink with each generation, electrons become harder to contain. Now, a research team led by Vincent Pott at the A*STAR Institute of Microelectronics, Singapore, has designed a memory device using a loose and moving part that actually enhances performance1.

The loose part is a tiny metal disk, or shuttle, about 300 nanometers thick and 2 micrometers long, and lies inside a roughly cylindrical metal cage. Because the shuttle is so small, gravity has little effect on it. Instead, the forces of adhesion between the shuttle and its metal cage determine its position. When stuck to the top of its cage, the shuttle completes an electrical circuit between two electrodes, causing current to flow. When it is at the bottom of the cage, the circuit is broken and no current flows. The shuttle can be moved from top to bottom by applying a voltage to a third electrode, known as a gate, underneath the cage.

Pott and co-workers suggested using this binary positioning to encode digital information. They predicted that the forces of adhesion would keep the shuttle in place even when the power is off, allowing the memory device to retain information for long periods of time. In fact, the researchers found that high temperature — one of the classic causes of electronic memory loss — should actually increase the duration of data retention by softening the metal that makes up the shuttle memory's disk and cage, thereby strengthening adhesion. The ability to operate in hot environments is a key requirement for military and aerospace applications.

The untethered shuttle also takes up less area than other designs and is not expected to suffer from mechanical fatigue because it avoids the use of components that need to bend or flex — such as the cantilevers used in competing mechanical memory approaches. In a simulation, Pott and co-workers found that the shuttle memory should be able to switch at speeds in excess of 1 megahertz.

The next steps, the researchers say, include designing arrays of the devices and analyzing fabrication parameters in detail. If all goes well, their novel device could compete head-to-head with the industry-standard FLASH memory.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Microelectronics

Pott, V., Li, C. G., Vaddi, R., Tsai, J. M.-L. & Kim, T. T. The shuttle nanoelectromechanical nonvolatile memory. IEEE Transactions on Electron Devices 59, 1137–1143 (2012).

A*STAR Research | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com
http://www.researchsea.com/html/article.php/eml/1/aid/7541/cid/1

More articles from Information Technology:

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

nachricht Data analysis optimizes cyber-physical systems in telecommunications and building automation
18.01.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>