Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Data mining made faster

New method eases analysis of 'multidimensional' information

To many big companies, you aren't just a customer, but are described by multiple "dimensions" of information within a computer database. Now, a University of Utah computer scientist has devised a new method for simpler, faster "data mining," or extracting and analyzing massive amounts of such data.

"Whether you like it or not, Google, Facebook, Walmart and the government are building profiles of you, and these consist of hundreds of attributes describing you" – your online searches, purchases, shared videos and recommendations to your Facebook friends, says Suresh Venkatasubramanian, an assistant professor of computer science.

"If you line them up for each person, you have a line of hundreds of numbers that paint a picture of a person: who they are, what their interests are, who their friends are and so forth," he says. "These strings of hundreds of attributes are called high-dimensional data because each attribute is called one dimension. Data mining is about digging up interesting information from this high-dimensional data."

A group of data-mining methods named "multidimensional scaling" or MDS first was used in the 1930s by psychologists and has been used ever since to make data analysis simpler by reducing the "dimensionality" of the data. Venkatasubramanian says it is "probably one of the most important tools in data mining and is used by countless researchers everywhere."

Now, Venkatasubramanian and colleagues have devised a new method of multidimensional scaling that is faster, simpler, can be used universally for numerous problems and can handle more data, basically by "squashing things [data] down to size."

He is scheduled to present the new method on Wednesday, July 28 in Washington at the premier meeting in his field, the Conference on Knowledge Discovery and Data Mining sponsored by the Association for Computing Machinery.

"This problem of dimensionality reduction and data visualization is fundamental in many disciplines in natural and social sciences," says Venkatasubramanian. "So we believe our method will be useful in doing better data analysis in all of these areas."

"What our approach does is unify into one common framework a number of different methods for doing this dimensionality reduction" to simplify high-dimensional data, he says. "We have a computer program that unifies many different methods people have developed over the past 60 or 70 years. One thing that makes it really good for today's data – in addition to being a one-stop shopping procedure – is it also handles much larger data sets than prior methods were able to handle."

He adds: "Prior methods on modern computers struggle with data from more than 5,000 people. Our method smoothly handles well above 50,000 people."

Venkatasubramanian conducted the research with University of Utah computer science doctoral student Arvind Agarwal and postdoctoral fellow Jeff Phillips. It was funded by the National Science Foundation.

The Curse of Dimensionality

When analyzing long strings of attributes describing people, "you are looking at not just the individual variables but how they interact with each other," he says. "For example, if you describe a person by their height and weight, these are individual variables that describe a person. However, they have correlations among them; a person who is taller is expected to be heavier than someone who is shorter."

The high "dimensionality" of data stems from the fact "the variables interact with each other. That's where you get a [multidimensional] space, not just a list of variables."

"Data mining means finding patterns, relationships and correlations in high-dimensional data," Venkatasubramanian says. "You literally are digging through the data to find little veins of information."

He says uses of data mining include Amazon's recommendations to individual customers based not only on their past purchases, but on those of people with similar preferences, and Netflix's similar method for recommending films. Facebook recommends friends based on people who already are your friends, and on their friends.

"The challenge of data mining is dealing with the dimensionality of the data and the volume of it. So one expression common in the data mining community is 'the curse of dimensionality,'" says Venkatasubramanian.

"The curse of dimensionality is the observed phenomenon that as you throw in more attributes to describe individuals, the data mining tasks you wish to perform become exponentially more difficult," he adds. "We are now at the point where the dimensionality and size of the data is a big problem. It makes things computationally very difficult to find these patterns we want to find."

Multidimensional scaling to simplify multidimensional data is an attempt "to reduce the dimensionality of data by finding key attributes defining most of the behavior," says Venkatasubramanian.

Universal, Fast Data Mining

Venkatasubramanian's new method is universal – "a new way of abstracting the problem into little pieces, and realizing many different versions of this problem can be abstracted the same way." In other words, one set of instructions can be used to do a wide variety of multidimensional scaling that previously required separate instructions.

The new method can handle large amounts of data because "rather than trying to analyze the entire set of data as a whole, we analyze it incrementally, sort of person by person," Venkatasubramanian says. That speeds data mining "because you don't need to have all the data in front of you before you start reducing its dimensionality"

Venkatasubramanian and colleagues performed a series of tests of their new method with "synthetic data" – data points in a "high-dimensional space."

The tests show the new way of data mining by multidimensional scaling "can be faster and equally accurate – and usually more accurate" than existing methods, he says.

The method has what is known as "guaranteed convergence," meaning that "it gets you a better and better and better answer, and it eventually will stop when it gets the best answer it can find," Venkatasubramanian says. It also is modular, which means parts of the software are easily swapped out as improvements are found.

Privacy and Data Mining

What of concerns that we are sacrificing our privacy to marketers?

"The issue of privacy in data mining is like any set of potentially negative consequences of scientific advances," says Venkatasubramanian, adding that much research has examined how to mine data in a manner that protects individual privacy.

He cites Netflix's movie recommendations, for example, noting that "if you target advertising based on what people need, it becomes useful. The better the advertising gets, the more it becomes useful information and not advertising."

"And the way we are being inundated with all forms of information in today's world, whether we like it or not we have no choice but to allow machines and automated systems to sift through all this to make sense of the deluge of information passing our eyes every day."

For more information on the University of Utah School of Computing and College of Engineering, see: and

University of Utah Public Relations
201 Presidents Circle, Room 308
Salt Lake City, Utah 84112-9017
(801) 581-6773 fax: (801) 585-3350

Kate Ferebee | EurekAlert!
Further information:

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>