Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Creating your own Animated 3D Characters and Scenes for the Web

28.02.2013
To show spatial animations on websites, developers so far have had only two options: to use special software or to implement it from scratch.
Computer scientists at Saarland University have developed a declarative markup language which facilitates the creation of distinct spatial animations and ensures their smooth replay in the web browser. The researchers will show their results at the trade fair Cebit in Hannover starting on 5 March (Hall 9, booth F34).

It could be a grotto. Light is glowing up from below and gives the moving waves a glance of an opal under the sunlight. “This computer graphic was written with our new description language by a schoolboy in not more than two hours after a briefly reading of the instructions”, explains Felix Klein, doctoral candidate at the chair of Computer Graphics at Saarland University. As Klein is moving three slide switches with the mouse which are placed under the wave graphic on the display, the water is transforming. Now, the waves are spreading circularly from the center point, as if someone had thrown a pebble into the middle of the water.

Computer scientists from Saarland University enable web developers to shape the Internet in its third dimension in an easier way.
bellhäuser - das bilderwerk

“Xflow” is the name of the new description language developed by Klein and his colleagues. It makes it not only possible to describe such three-dimensional appearing animations more easily but also manages it that the required data is efficiently processed by the central processing unit and the graphics processor. Hence, the animation is running in the browser fluidly. “Up till now, this has not been that easy”, explains Philipp Slusallek, professor for Computer Graphics at Saarland University. “Meanwhile, even a mobile phone has enough computing power to play spatial data content from the internet. But the web technologies, necessary for using 3D content on the web, and the machine-orientated programming of graphic hardware have not found a common ground yet”, so Slusallek, who also works as Scientific Director of the German Research Center for Artificial Intelligence and as Director of Research of the Intel Visual Computing Institute in Saarbrücken.

Xflow shall help to fill this gap. It’s declarative. What means in this case, that the developers rather describe which pattern synthesis effects shall get constructed, than to wrack their brains about how these can be computed in detail. In its appearance, Xflow resembles to the languages HTML and Javascript. With Javascript, it is indeed possible to describe three-dimensional data contents; however the data, which is needed for that, cannot be computed offhand in a parallel and thus efficient way. Xflow allows the so-called parallelization automatically due to its structure. Neither, the programmers need to worry about this, nor about the allocation of disk space. Other software systems can also accomplish this, but with them only a limited number of shifts, textures and pattern effects can be described.

Xflow offers an alternative by defining a multiplicity of small components, so-called operators, of which complex animations can be created easily. In doing so, it uses the service of the HTML-upgrading XML3D, which allows the easy embedding of spatial data contents on websites. It was also developed by Philipp Slusallek and his team. He is confident: “After XML3D we took the next step forward to present three-dimensional contents on the internet in such an easy way as it’s already the case with embedded Youtube videos.” The development of Xflow has been supported by the Intel Visual Computing Institute (IVCI) of Saarland University and by the German Research Center for Artificial Intelligence (DFKI).

Computer Science research on the campus of Saarland University
The DFKI and the IVCI are not the only research institutions which, besides the Department of Computer Science on the campus of Saarland University, are exploring new aspects of computer science. Only a few yards from there, you can also find: the Max-Planck-Institute for Computer Science, the Max-Planck-Institute for Software Systems, the Center for Bioinformatics, the Center for IT-Security, Privacy and Accountability and the re- granted Cluster of Excellence “Multimodal Computing and Interaction”.

See also: Scientific paper “Xflow - Declarative Data Processing for the Web”
https://graphics.cg.uni-saarland.de/2012/xflow-declarative-data-processing-for-the-web/

Animation “Waves”: http://xml3d.github.com/xml3d-examples/examples/xflowWave/xflow-wave.xhtml

Further Questions are answered by:
Prof. Dr. Philipp Slusallek
Saarland University/DFKI
Ph: +49 681 / 85775-5377 or 302-3830
E-Mail: slusallek@cs.uni-saarland.de

Gordon Bolduan, Science Communication
Cluster of Excellence
Phone: +49 681 302-70741
Cebit booth: +49 511/ 89497024
E-Mail: bolduan@mmci.uni-saarland.de

Friederike Meyer zu Tittingdorf | Universität des Saarlandes
Further information:
http://www.uni-saarland.de
http://xml3d.github.com/xml3d-examples/examples/xflowWave/xflow-wave.xhtml
http://graphics.cg.uni-saarland.de/2012/xflow-declarative-data-processing-for-the-web/

More articles from Information Technology:

nachricht NASA CubeSat to test miniaturized weather satellite technology
10.11.2017 | NASA/Goddard Space Flight Center

nachricht New approach uses light instead of robots to assemble electronic components
08.11.2017 | The Optical Society

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>