Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computing squared

07.08.2008
Computing pundits claim that we are moving into a world of ubiquitous computing. In this brave new world, your refrigerator and store cupboard will be connected to your internet shopping accounts so that you need never run out of milk or sugar again.

Sensors around your home and workplace will respond to workloads, weather and even your mood by adjusting heating, lighting, and sound levels. Diagnostic devices built into door handles or the bathroom might alert your doctor or the emergency services to changes in your health.

How this emerging technology will be woven into the fabric of society and our everyday living spaces is an open question but ultimately people, rather than computer screens and keyboards will projected into the foreground.

Writing in the International Journal of Autonomous and Adaptive Communications Systems, Maja Pantic of Imperial College London, Anton Nijholt of the University of Twente, The Netherlands, Alex Pentland, of the Media Lab at Massachusetts Institute of Technology, and Thomas Huanag of the University of Illinois at Urbana-Champaign, explain that for computing to become all-pervasive and useful, it, rather than we, must adapt to our natural way of living, communicating, and working.

"Next-generation computing should develop anticipatory user interfaces that are human-centred, built for humans and based on naturally occurring ways people communicate," the researchers say. The new computer interfaces will go way beyond the traditional keyboard and mouse and be able to understand and emulate people as well as recognising behavioural cues, such as body language, facial expressions, tone of voice and other social signals.

The researchers describe just how close we are to the goal of human-centred computing and Human-Centred Intelligent Human-Computer Interaction (HCI-squared).

So far, computers and the internet have become so embedded in the daily fabric of people's lives, in the developed world and in some parts of the developing world, that they simply cannot live without them. New technology is an essential part of our work, our communications, shopping, finding information, and entertainment. "These processes shift human activity away from real physical objects, emphasising virtual over physical environments," the researchers explain.

In order to create technology based on the HCI-squared concept, there has to be a paradigm shift in our approach to computing. Most of the present approaches to machine analysis of human behaviour are neither, such as facial expressions and the spoken word, are neither context-sensitive, nor able to handle long timescales.

"The focus of future research efforts in the field should be primarily on tackling the problem," the researchers conclude, "This problem should be treated as one complex problem rather than a number of detached problems in human sensing, context sensing and human behaviour understanding." Only then will we see truly ubiquitous computing that fulfils its promise of improving our lives, social conditions, and healthcare.

Albert Ang | alfa
Further information:
http://www.inderscience.com

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>