Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computing on multiple graphic cards accelerates numerical simulations by orders of magnitude

04.01.2011
The Fraunhofer Institute for Algorithms and Scientific Computing SCAI, in conjunction with the Institute for Numerical Simulation (INS) at the University of Bonn have been selected as one of the first CUDA™ Research Centers in Germany based on the vision, quality and impact of their work. The research will emphasize the development of massively paralleled multi-GPU based software packages for numerical simulation in the Natural and Engineering Sciences. Companies will benefit from the transfer of knowledge from basic research to practical applications.

Because of their leading research in numerical simulation using parallel computing practices, the Fraunhofer Institute for Algorithms and Scientific Computing SCAI and the Institute for Numerical Simulation (INS) at the University of Bonn have officially become one of the first German NVIDIA CUDA Research Centers. The research on parallelization of existing simulation codes to run on machines with multiple graphics processing units (GPUs) is led by Prof. Dr. Michael Griebel, director of the INS and director of the Fraunhofer Institute SCAI.

"Our vision is to develop a massively parallel, completely multi-GPU based high performance molecular dynamics software package, as well as a massively parallel, completely multi-GPU based high performance fluid dynamics code," says Griebel. "Our customers from industry and research institutes will profit from our ability to solve general challenges of high-performance computing in this way."

Today, numerical simulations are indispensable in industrial production. Examples are the creation of new materials, the modeling of manufacturing process chains, and the simulation of material strength and fluid dynamics. However, these simulations require computing times from hours to days – even on high performance computers. This is why industry and science are very interested to shorten processing times.

Computing on multiple graphics cards promises an enormous acceleration of these simulations. NVIDIA’s CUDA parallel computing architecture, enables a dramatic increase in computing performance by harnessing the tremendous power of the GPU. Especially for software that is well suited for parallel computing, the graphics processor is faster than conventional CPUs by orders of magnitude. For example, the INS successfully ran the fluid solver package NaSt3DGPF on eight traditional processors coupled with eight graphics processors. Performing a benchmark study showed that the multiple GPU configuration was even slightly faster than a system using 256 conventional processors.

The researchers from INS and SCAI hope to gain similar effects from adapting the software package Tremolo-X for use on multiple graphics cards. Tremolo-X is used for the molecular dynamics of atoms or molecules. This software simulates materials at the nano scale, and therefore makes it possible to efficiently design new and innovative materials.

Computing on graphics cards not only promises an enormous acceleration of numerical simulations. The GPUs also require much less electricity, delivering a much higher performance per watt benefit. A particular computing task on a conventional parallel computer with 256 processors uses up to 70 kilowatts, compared to only 3 kilowatts on the machine with multiple GPUs. Furthermore, companies profit from GPU computing because the hardware is cheaper.

About Fraunhofer SCAI:
The Fraunhofer Institute for Algorithms and Scientific Computing SCAI conducts research in the field of computer simulations for product and process development, and is a prominent corporate partner in the industrial and science sectors.
SCAI designs and optimizes industrial applications, implements custom solutions for production and logistics, and offers calculations on high-performance computers. Our services are based on industrial engineering, combined with state-of-the-art methods from applied mathematics and information technology.

www.scai.fraunhofer.de

About the Institute for Numerical Simulation:
The Institut für Numerische Simulation of the Rheinische Friedrich-Wilhelms-Universität Bonn is devoted to the design and implementation of computational tools for scientific applications. We develop novel numerical techniques for the simulation of e.g. chemical, physical, engineering and economic processes. Our research and development activities are application driven.
The INS's core competencies include high performance scientific computing, numerical mathematics, computational chemistry and physics, as well as financial engineering. We conduct collaborative scientific investigations which require the power of high performance computers and the efficiency of modern computational methods.

www.ins.uni-bonn.de

About NVIDIA:
NVIDIA (NASDAQ:NVDA) awakened the world to the power of computer graphics when it invented the GPU in 1999. Since then, it has consistently set new standards in visual computing with breathtaking, interactive graphics available on devices ranging from tablets and portable media players to notebooks and workstations. NVIDIA's expertise in programmable GPUs has led to breakthroughs in parallel processing which make supercomputing inexpensive and widely accessible. The Company holds more than 1,600 patents worldwide, including ones covering designs and insights that are essential to modern computing. For more information, see www.nvidia.com.

Michael Krapp | Fraunhofer-Institut
Further information:
http://www.scai.fraunhofer.de
http://research.nvidia.com/content/fraunhofer-unibonn-crc-summary
http://www.nvidia.com

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>