Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computing on multiple graphic cards accelerates numerical simulations by orders of magnitude

04.01.2011
The Fraunhofer Institute for Algorithms and Scientific Computing SCAI, in conjunction with the Institute for Numerical Simulation (INS) at the University of Bonn have been selected as one of the first CUDA™ Research Centers in Germany based on the vision, quality and impact of their work. The research will emphasize the development of massively paralleled multi-GPU based software packages for numerical simulation in the Natural and Engineering Sciences. Companies will benefit from the transfer of knowledge from basic research to practical applications.

Because of their leading research in numerical simulation using parallel computing practices, the Fraunhofer Institute for Algorithms and Scientific Computing SCAI and the Institute for Numerical Simulation (INS) at the University of Bonn have officially become one of the first German NVIDIA CUDA Research Centers. The research on parallelization of existing simulation codes to run on machines with multiple graphics processing units (GPUs) is led by Prof. Dr. Michael Griebel, director of the INS and director of the Fraunhofer Institute SCAI.

"Our vision is to develop a massively parallel, completely multi-GPU based high performance molecular dynamics software package, as well as a massively parallel, completely multi-GPU based high performance fluid dynamics code," says Griebel. "Our customers from industry and research institutes will profit from our ability to solve general challenges of high-performance computing in this way."

Today, numerical simulations are indispensable in industrial production. Examples are the creation of new materials, the modeling of manufacturing process chains, and the simulation of material strength and fluid dynamics. However, these simulations require computing times from hours to days – even on high performance computers. This is why industry and science are very interested to shorten processing times.

Computing on multiple graphics cards promises an enormous acceleration of these simulations. NVIDIA’s CUDA parallel computing architecture, enables a dramatic increase in computing performance by harnessing the tremendous power of the GPU. Especially for software that is well suited for parallel computing, the graphics processor is faster than conventional CPUs by orders of magnitude. For example, the INS successfully ran the fluid solver package NaSt3DGPF on eight traditional processors coupled with eight graphics processors. Performing a benchmark study showed that the multiple GPU configuration was even slightly faster than a system using 256 conventional processors.

The researchers from INS and SCAI hope to gain similar effects from adapting the software package Tremolo-X for use on multiple graphics cards. Tremolo-X is used for the molecular dynamics of atoms or molecules. This software simulates materials at the nano scale, and therefore makes it possible to efficiently design new and innovative materials.

Computing on graphics cards not only promises an enormous acceleration of numerical simulations. The GPUs also require much less electricity, delivering a much higher performance per watt benefit. A particular computing task on a conventional parallel computer with 256 processors uses up to 70 kilowatts, compared to only 3 kilowatts on the machine with multiple GPUs. Furthermore, companies profit from GPU computing because the hardware is cheaper.

About Fraunhofer SCAI:
The Fraunhofer Institute for Algorithms and Scientific Computing SCAI conducts research in the field of computer simulations for product and process development, and is a prominent corporate partner in the industrial and science sectors.
SCAI designs and optimizes industrial applications, implements custom solutions for production and logistics, and offers calculations on high-performance computers. Our services are based on industrial engineering, combined with state-of-the-art methods from applied mathematics and information technology.

www.scai.fraunhofer.de

About the Institute for Numerical Simulation:
The Institut für Numerische Simulation of the Rheinische Friedrich-Wilhelms-Universität Bonn is devoted to the design and implementation of computational tools for scientific applications. We develop novel numerical techniques for the simulation of e.g. chemical, physical, engineering and economic processes. Our research and development activities are application driven.
The INS's core competencies include high performance scientific computing, numerical mathematics, computational chemistry and physics, as well as financial engineering. We conduct collaborative scientific investigations which require the power of high performance computers and the efficiency of modern computational methods.

www.ins.uni-bonn.de

About NVIDIA:
NVIDIA (NASDAQ:NVDA) awakened the world to the power of computer graphics when it invented the GPU in 1999. Since then, it has consistently set new standards in visual computing with breathtaking, interactive graphics available on devices ranging from tablets and portable media players to notebooks and workstations. NVIDIA's expertise in programmable GPUs has led to breakthroughs in parallel processing which make supercomputing inexpensive and widely accessible. The Company holds more than 1,600 patents worldwide, including ones covering designs and insights that are essential to modern computing. For more information, see www.nvidia.com.

Michael Krapp | Fraunhofer-Institut
Further information:
http://www.scai.fraunhofer.de
http://research.nvidia.com/content/fraunhofer-unibonn-crc-summary
http://www.nvidia.com

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>