Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Computing on multiple graphic cards accelerates numerical simulations by orders of magnitude

The Fraunhofer Institute for Algorithms and Scientific Computing SCAI, in conjunction with the Institute for Numerical Simulation (INS) at the University of Bonn have been selected as one of the first CUDA™ Research Centers in Germany based on the vision, quality and impact of their work. The research will emphasize the development of massively paralleled multi-GPU based software packages for numerical simulation in the Natural and Engineering Sciences. Companies will benefit from the transfer of knowledge from basic research to practical applications.

Because of their leading research in numerical simulation using parallel computing practices, the Fraunhofer Institute for Algorithms and Scientific Computing SCAI and the Institute for Numerical Simulation (INS) at the University of Bonn have officially become one of the first German NVIDIA CUDA Research Centers. The research on parallelization of existing simulation codes to run on machines with multiple graphics processing units (GPUs) is led by Prof. Dr. Michael Griebel, director of the INS and director of the Fraunhofer Institute SCAI.

"Our vision is to develop a massively parallel, completely multi-GPU based high performance molecular dynamics software package, as well as a massively parallel, completely multi-GPU based high performance fluid dynamics code," says Griebel. "Our customers from industry and research institutes will profit from our ability to solve general challenges of high-performance computing in this way."

Today, numerical simulations are indispensable in industrial production. Examples are the creation of new materials, the modeling of manufacturing process chains, and the simulation of material strength and fluid dynamics. However, these simulations require computing times from hours to days – even on high performance computers. This is why industry and science are very interested to shorten processing times.

Computing on multiple graphics cards promises an enormous acceleration of these simulations. NVIDIA’s CUDA parallel computing architecture, enables a dramatic increase in computing performance by harnessing the tremendous power of the GPU. Especially for software that is well suited for parallel computing, the graphics processor is faster than conventional CPUs by orders of magnitude. For example, the INS successfully ran the fluid solver package NaSt3DGPF on eight traditional processors coupled with eight graphics processors. Performing a benchmark study showed that the multiple GPU configuration was even slightly faster than a system using 256 conventional processors.

The researchers from INS and SCAI hope to gain similar effects from adapting the software package Tremolo-X for use on multiple graphics cards. Tremolo-X is used for the molecular dynamics of atoms or molecules. This software simulates materials at the nano scale, and therefore makes it possible to efficiently design new and innovative materials.

Computing on graphics cards not only promises an enormous acceleration of numerical simulations. The GPUs also require much less electricity, delivering a much higher performance per watt benefit. A particular computing task on a conventional parallel computer with 256 processors uses up to 70 kilowatts, compared to only 3 kilowatts on the machine with multiple GPUs. Furthermore, companies profit from GPU computing because the hardware is cheaper.

About Fraunhofer SCAI:
The Fraunhofer Institute for Algorithms and Scientific Computing SCAI conducts research in the field of computer simulations for product and process development, and is a prominent corporate partner in the industrial and science sectors.
SCAI designs and optimizes industrial applications, implements custom solutions for production and logistics, and offers calculations on high-performance computers. Our services are based on industrial engineering, combined with state-of-the-art methods from applied mathematics and information technology.

About the Institute for Numerical Simulation:
The Institut für Numerische Simulation of the Rheinische Friedrich-Wilhelms-Universität Bonn is devoted to the design and implementation of computational tools for scientific applications. We develop novel numerical techniques for the simulation of e.g. chemical, physical, engineering and economic processes. Our research and development activities are application driven.
The INS's core competencies include high performance scientific computing, numerical mathematics, computational chemistry and physics, as well as financial engineering. We conduct collaborative scientific investigations which require the power of high performance computers and the efficiency of modern computational methods.

NVIDIA (NASDAQ:NVDA) awakened the world to the power of computer graphics when it invented the GPU in 1999. Since then, it has consistently set new standards in visual computing with breathtaking, interactive graphics available on devices ranging from tablets and portable media players to notebooks and workstations. NVIDIA's expertise in programmable GPUs has led to breakthroughs in parallel processing which make supercomputing inexpensive and widely accessible. The Company holds more than 1,600 patents worldwide, including ones covering designs and insights that are essential to modern computing. For more information, see

Michael Krapp | Fraunhofer-Institut
Further information:

More articles from Information Technology:

nachricht Fraunhofer FIT joins Facebook's Telecom Infra Project
25.10.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Stanford researchers create new special-purpose computer that may someday save us billions
21.10.2016 | Stanford University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

Gene therapy shows promise for treating Niemann-Pick disease type C1

27.10.2016 | Life Sciences

Solid progress in carbon capture

27.10.2016 | Power and Electrical Engineering

More VideoLinks >>>