Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Computers Make Sense Of Experiments On Human Disease

Mathematical models resolve controversy over nicotine addiction

Increased use of computers to create predictive models of human disease is likely following a workshop organised by the European Science Foundation (ESF), which urged for a collaborative effort between specialists in the field.

Human disease research produces an enormous amount of data from different sources such as animal models, high throughput genetic screening of human tissue, and in vitro laboratory experiments. This data operates at different levels and scales including genes, molecules, cells, tissues and whole organs, embodying a huge amount of potentially valuable insight that current computer modelling approaches often fail to exploit properly.

However, significant advances in the modelling of a few specific diseases, such as multiple sclerosis (MS), have been made. A major aim of the ESF workshop was thus to generalise such work and create a more coherent body of expertise across the whole field of computational disease analysis, according to Albert Compte, co-convenor of the ESF workshop, from the Computational and physiological bases of cortical networks laboratory at the Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS) in Barcelona. "A workshop like this one was useful in seeing how advances in other research fields can be used more generally for disease modelling," said Compte. "So far, novel modelling approaches have been confined to a specific disease or a particular level of description".

A model might be confined just to the molecular level or the cellular level for example. The ESF workshop highlighted the benefits that could be obtained from integrating data from different levels. This can provide more detailed and flexible models, with greater power to identify causes of diseases and predict possible cures in future.

However, one potential problem when building sophisticated disease models operating at different levels is that they can become too complex, with a lack of sufficient data for any useful analysis. This can be resolved by selecting a simpler model that corresponds only to the experimental data that actually exists. Delegates at the workshop heard how in the case of MS, selection of the model could be tuned to the data, to make best use of the actual experimental results obtained in a particular study, as explained by Jesper Tegner, another co-convenor of the ESF workshop, from the Atherosclerosis Research Unit at the Karolinska Institute Centre for Molecular Medicine (CMM) in Stockholm, Sweden.

"There was one exciting presentation on MS," said Tegner. "The immune system is clearly central for MS. However, the trick in the case of MS is to represent different aspects of the immune system according to the available data.The objective isn't to model the whole immune system. One interesting level of abstraction was the presentation of agent-based modelling of MS where individual cells operated as agents, thus omitting the intracellular machinery." In other words, the detailed interior workings of the cells could be ignored in this case because that would have made the model overcomplicated, with insufficient data at the different levels to produce any useful insights.

In other experiments, data about varying levels of gene expression was obtained, which required very different models with networks of graphs. These highlighted the patterns of gene expression associated with a particular disease, such as MS.

Yet another valuable application of computer-based mathematical disease models lies in studying the phenomenon of addiction to drugs such as nicotine and helping to reconcile conflicting theories, as Compte pointed out. "The neurobiology of nicotine addiction is a hotly debated field. In particular, there are two contending views on how neurons and their connections in subcortical nuclei are affected by nicotine. This computer model allows us to reconcile the apparently contradictory results obtained from in vitro and in vivo experiments, and thus provides a single theoretical proposal of how nicotine affects neuronal circuits in the brain and causes addiction, compatible with most available experimental results."

Tegner and others at the workshop were confident that a coherent framework for building multi-level mathematical models on the basis of available data will lead to better understanding of many diseases and conditions such as drug addiction. This in turn, could lead to better therapies.

Thomas Lau | alfa
Further information:

More articles from Information Technology:

nachricht New 3-D wiring technique brings scalable quantum computers closer to reality
19.10.2016 | University of Waterloo

nachricht Quantum computers: 10-fold boost in stability achieved
18.10.2016 | University of New South Wales

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>