Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computers can covertly communicate via audio signals

05.12.2013
The computer scientists Michael Hanspach and Michael Goetz of the Fraunhofer Institute for Communication, Information Processing and Ergonomics FKIE have proven that computers can create hidden networks via inaudible sound.

Michael Hanspach confirmed media coverage on the topic in a radio interview with Hessischer Rundfunk yesterday. Hanspach and his colleague had successfully transmitted data from one computer to another without providing a connection via wireless LAN, network cards or the internet. This was made possible through audio signals emitted from a loudspeaker and received by a microphone.

In an experiment that was published in the Journal of Communications in November Michael Hanspach and Michael Goetz studied how computers can connect to each other in an inaudible acoustic network and exchange data. In the mesh network the computers were not connected to a central access point or router which would be the case in a conventional wireless LAN network.

The scientists chose a near ultrasonic frequency range. The results of the experiment: The computers communicated with each other within a range of up to 20 m (19.7 meters, 64.6 feet) using their built-in loudspeakers and microphones.

That wasn't all: In the experiment which involved five computers the signals could be transmitted from one computer to another until one computer with a regular internet connection took the signal "outside".

This result might also be achieved with smartphones or tablets, says Michael Hanspach. Would it be possible to infect computers with malware this way? Hanspach is sceptical that the malware "badBIOS" exists in the manner that was discussed in the technology news articles of the past weeks. However, what sounds like science fiction today might well be reality in five years, the scientist says. The danger from an audio botnet would be considerable. This applies to critical infrastructures, for example.

Update to original German press release:
Fraunhofer FKIE is actively involved in information security research.
Our mission is to strengthen security by the means of early detection and
prevention of potential threats. The research on acoustical mesh networks
in air was aimed at demonstrating the upcoming threat of covert
communication technologies.
Fraunhofer FKIE does not develop any malware or viruses and the presented
proof-of-concept does not spread to other computing systems, but
constitutes only a covert communication channel between hypothetical
instantiations of a malware.
The ultimate goal of the presented research project is to raise awareness
for these kinds of attacks, and to deliver appropriate countermeasures to
our customers.
Weitere Informationen:
http://arstechnica.com/security/2013/12/scientist-developed-malware-covertly-jumps-air-gaps-using-inaudible-sound/

- arstechnica on the article by Michael Hanspach and Michael Goetz

http://www.heise.de/security/meldung/Supertrojaner-BadBIOS-Unwahrscheinlich-aber
- Heise online on BadBIOS
http://www.zeit.de/digital/internet/2013-11/badbios-supervirus-debatte
- ZEIT online on BadBIOS

Anne Williams | Fraunhofer-Institut
Further information:
http://www.fkie.fraunhofer.de

Further reports about: Bird Communication FKIE LAN Wireless LAN computing system network cards

More articles from Information Technology:

nachricht Smart Computers
21.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht AI implications: Engineer's model lays groundwork for machine-learning device
18.08.2017 | Washington University in St. Louis

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>