Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computers can covertly communicate via audio signals

05.12.2013
The computer scientists Michael Hanspach and Michael Goetz of the Fraunhofer Institute for Communication, Information Processing and Ergonomics FKIE have proven that computers can create hidden networks via inaudible sound.

Michael Hanspach confirmed media coverage on the topic in a radio interview with Hessischer Rundfunk yesterday. Hanspach and his colleague had successfully transmitted data from one computer to another without providing a connection via wireless LAN, network cards or the internet. This was made possible through audio signals emitted from a loudspeaker and received by a microphone.

In an experiment that was published in the Journal of Communications in November Michael Hanspach and Michael Goetz studied how computers can connect to each other in an inaudible acoustic network and exchange data. In the mesh network the computers were not connected to a central access point or router which would be the case in a conventional wireless LAN network.

The scientists chose a near ultrasonic frequency range. The results of the experiment: The computers communicated with each other within a range of up to 20 m (19.7 meters, 64.6 feet) using their built-in loudspeakers and microphones.

That wasn't all: In the experiment which involved five computers the signals could be transmitted from one computer to another until one computer with a regular internet connection took the signal "outside".

This result might also be achieved with smartphones or tablets, says Michael Hanspach. Would it be possible to infect computers with malware this way? Hanspach is sceptical that the malware "badBIOS" exists in the manner that was discussed in the technology news articles of the past weeks. However, what sounds like science fiction today might well be reality in five years, the scientist says. The danger from an audio botnet would be considerable. This applies to critical infrastructures, for example.

Update to original German press release:
Fraunhofer FKIE is actively involved in information security research.
Our mission is to strengthen security by the means of early detection and
prevention of potential threats. The research on acoustical mesh networks
in air was aimed at demonstrating the upcoming threat of covert
communication technologies.
Fraunhofer FKIE does not develop any malware or viruses and the presented
proof-of-concept does not spread to other computing systems, but
constitutes only a covert communication channel between hypothetical
instantiations of a malware.
The ultimate goal of the presented research project is to raise awareness
for these kinds of attacks, and to deliver appropriate countermeasures to
our customers.
Weitere Informationen:
http://arstechnica.com/security/2013/12/scientist-developed-malware-covertly-jumps-air-gaps-using-inaudible-sound/

- arstechnica on the article by Michael Hanspach and Michael Goetz

http://www.heise.de/security/meldung/Supertrojaner-BadBIOS-Unwahrscheinlich-aber
- Heise online on BadBIOS
http://www.zeit.de/digital/internet/2013-11/badbios-supervirus-debatte
- ZEIT online on BadBIOS

Anne Williams | Fraunhofer-Institut
Further information:
http://www.fkie.fraunhofer.de

Further reports about: Bird Communication FKIE LAN Wireless LAN computing system network cards

More articles from Information Technology:

nachricht Seeing the forest through the trees with a new LiDAR system
28.06.2017 | The Optical Society

nachricht Drones that drive
27.06.2017 | Massachusetts Institute of Technology, CSAIL

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

High conductive foils enabling large area lighting

29.06.2017 | Power and Electrical Engineering

Designed proteins to treat muscular dystrophy

29.06.2017 | Life Sciences

Climate Fluctuations & Non-equilibrium Statistical Mechanics: An Interdisciplinary Dialog

29.06.2017 | Seminars Workshops

VideoLinks
B2B-VideoLinks
More VideoLinks >>>