Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Computer scientists develop 'mathematical jigsaw puzzles' to encrypt software

Software remains completely functional but impervious to reverse-engineering

UCLA computer science professor Amit Sahai and a team of researchers have designed a system to encrypt software so that it only allows someone to use a program as intended while preventing any deciphering of the code behind it. This is known in computer science as "software obfuscation," and it is the first time it has been accomplished.

Sahai, who specializes in cryptography at UCLA's Henry Samueli School of Engineering and Applied Science, collaborated with Sanjam Garg, who recently earned his doctorate at UCLA and is now at IBM Research; Craig Gentry, Shai Halevi and Mariana Raykova of IBM Research; and Brent Waters, an assistant professor of computer science at the University of Texas at Austin. Garg worked with Sahai as a student when the research was done.

Their peer-reviewed paper will be formally presented in October at the 54th annual IEEE Symposium on Foundations of Computer Science, one of the two most prominent conferences in the field of theoretical computer science. Sahai has also presented this research in recent invited talks at Stanford University and the Massachusetts Institute of Technology.

"The real challenge and the great mystery in the field was: Can you actually take a piece of software and encrypt it but still have it be runnable, executable and fully functional," Sahai said. "It's a question that a lot of companies have been interested in for a long time."

According to Sahai, previously developed techniques for obfuscation presented only a "speed bump," forcing an attacker to spend some effort, perhaps a few days, trying to reverse-engineer the software. The new system, he said, puts up an "iron wall," making it impossible for an adversary to reverse-engineer the software without solving mathematical problems that take hundreds of years to work out on today's computers — a game-change in the field of cryptography.

The researchers said their mathematical obfuscation mechanism can be used to protect intellectual property by preventing the theft of new algorithms and by hiding the vulnerability a software patch is designed to repair when the patch is distributed.

"You write your software in a nice, reasonable, human-understandable way and then feed that software to our system," Sahai said. "It will output this mathematically transformed piece of software that would be equivalent in functionality, but when you look at it, you would have no idea what it's doing."

The key to this successful obfuscation mechanism is a new type of "multilinear jigsaw puzzle." Through this mechanism, attempts to find out why and how the software works will be thwarted with only a nonsensical jumble of numbers.

"The real innovation that we have here is a way of transforming software into a kind of mathematical jigsaw puzzle," Sahai said. "What we're giving you is just math, just numbers, or a sequence of numbers. But it lives in this mathematical structure so that these individual pieces, these sequences of numbers, can only be combined with other numbers in very specified ways.

"You can inspect everything, you can turn it upside-down, you can look at it from different angles and you still won't have any idea what it's doing," he added. "The only thing you can do with it is put it together the way that it was meant to interlock. If you tried to do anything else — like if you tried to bash this piece and put it in some other way — you'd just end up with garbage."

Functional encryption

The new technique for software obfuscation paved the way for another breakthrough called functional encryption. With functional encryption, instead of sending an encrypted message, an encrypted function is sent in its place. This offers a much more secure way to protect information, Sahai said. Previous work on functional encryption was limited to supporting very few functions; the new work can handle any computable function.

For example, a single message could be sent to a group of people in such a way that each receiver would obtain different information, depending on characteristics of that particular receiver. In another example, a hospital could share the outcomes of treatment with researchers without revealing details such as identifying patient information.

"Through functional encryption, you only get the specific answer, you don't learn anything else," Sahai said.

The UCLA-based researchers were funded in part by the National Science Foundation, a Xerox Faculty Research Award, a Google Faculty Research Award, an equipment grant from Intel and an Okawa Foundation Research Grant.

The UCLA Henry Samueli School of Engineering and Applied Science, established in 1945, offers 28 academic and professional degree programs and has an enrollment of more than 5,000 students. The school's distinguished faculty are leading research to address many of the critical challenges of the 21st century, including renewable energy, clean water, health care, wireless sensing and networking, and cyber-security. Ranked among the top 10 engineering schools at public universities nationwide, the school is home to eight multimillion-dollar interdisciplinary research centers in wireless sensor systems, wireless health, nanoelectronics, nanomedicine, renewable energy, customized computing, the smart grid, and the Internet, all funded by federal and private agencies and individual donors. ( |

For more news, visit the UCLA Newsroom and follow us on Twitter.

Matthew Chin | EurekAlert!
Further information:

More articles from Information Technology:

nachricht Fraunhofer FIT joins Facebook's Telecom Infra Project
25.10.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Stanford researchers create new special-purpose computer that may someday save us billions
21.10.2016 | Stanford University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>