Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer program lets users learn keyboard shortcuts with minimal effort

30.09.2013
A computer scientist from Saarbrucken has developed a software which assists users in identifying and learning shortcuts so that they can become as fast as expert users. This new interface mechanism is easy to integrate in programs using a toolbar, a menu or ribbons as a graphical user interface.

If somebody wants to shift text elements within a Word document from one position to another, he usually uses the mouse. This procedure is rather cumbersome for the user, since he first needs to click and highlight the text element before he can put it at the appropriate place.

The user could avoid such complications by using a few shortcut keys, so-called hotkeys, instead. Certain hotkeys correspond to mouse clicks regarding the actions they perform. Nevertheless, users frequently do not know enough keyboard shortcuts to work with them efficiently, or are not aware of the available combinations.

Gilles Bailly, researcher at the Max Planck Institute for Informatics and the Cluster of Excellence at Saarland University, wants to change that situation. By making the shortcuts readily accessible to everybody, he wants to increase the use of hotkeys among less-experienced users and help them maximize expert performance by using consistent shortcuts. To accomplish this, Bailly developed a special interface mechanism in collaboration with other researchers from several universities. It enables hotkey browsing, supports physical rehearsal and assures rapid hotkey identification.

“To see the hotkeys, the user needs to press a certain key button”, explains Sylvain Malacria from the University of Canterbury in New Zealand. He calls this special key the modifier. On an Apple keyboard, this function is taken by the command key; at a Windows computer, by the control key. As soon as the user has pressed the modifier, the software overlaps the icons on the screen, as for example all the symbols in a toolbar for a Word document, with shortcuts for a few seconds. Thus, the interface mechanisms shows small boxes in which every equivalent keyboard shortcut is displayed. In so doing, users who rarely use the computer are given the essential hints to apply the shortcuts until they know them by heart. The program supports them by proposing the hotkeys very quickly; they need only press the modifier key. To use the shortcuts more generally, the user frequently has to repeat the same finger moves. In this way, the user keeps remembering the key combinations. Professionals, on the other hand, can expand their shortcut knowledge and accelerate their working speed by using this mechanism, which the researchers named “ExposeHK”.

“If the user is in the middle of a workflow, he does not need to remove his hands from the keyboard and reach for the mouse. He is able to enter his commands into the computer directly”, says Bailly. To test their software, the researchers ran some studies. They asked participants to identify icons in toolbars and select them as fast as possible. To do that, the participants could either follow the instructions of a speaker, who was reading the key combinations to them, or they could use the mouse or the new software’s hotkey display. After that, the test participants had to choose which of the methods was easiest to manage. Most of the participants decided in favor of Bailly’s mechanism. The study results show that amateurs used the keyboard shortcuts four times more often after they had sampled them for a few minutes. “It’s no matter if the user forgot a shortcut. The only thing he has to do is to press the modifier again and the shortcut overview pops up”, Bailly explains.

He could observe how positively the user community responded to his software when he exhibited it at a prestigious Human-Computer Interaction research conference (ACM CHI) in Paris. “With our mechanism, we offer the user a simple and elegant solution to operate efficiently. And it is neither expensive to integrate nor to learn”, says Bailly. He is therefore confident that his mechanism will be available every conceivable application soon.

Background information on Saarbrücken’s Cluster of Excellence:

Since 2007, the Cluster of Excellence “Multimodal Computing and Interaction” at Saarland University has received major national and regional funding. Work at the MMCI Cluster includes research into strategies for organizing, understanding and searching multimodal information from audio files, photos, images, texts and videos. Researchers from Saarland University and the following institutes belong to the Cluster: the German Research Center for Artificial Intelligence, Max Planck Institute for Informatics, Max Planck Institute for Software Systems and Center for IT-Security, Privacy and Accountability (CISPA).

Further questions can be addressed to:

Gilles Bailly
Max-Planck-Institute for Informatics
Cluster of Excellence on “Multimodal Computing and Interaction”
E-Mail: gbailly@mpi-inf.mpg.de
Editor:
Gordon Bolduan
Science Communication
Cluster of Excellence on “Multimodal Computing and Interaction”
Phone: +49 681 30270741
E-Mail: bolduan@mmci.uni-saarland.de

Friederike Meyer zu Tittingdorf | idw
Further information:
http://www.gillesbailly.fr/hotkeys.html
http://www.youtube.com/watch?v=f1fmKX3jKxI

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>