Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer program could help solve arson cases

25.04.2014

Sifting through the chemical clues left behind by arson is delicate, time-consuming work, but University of Alberta researchers teaming with RCMP scientists in Canada, have found a way to speed the process.

A computer program developed by University of Alberta chemistry professor James Harynuk, his team of graduate and undergraduate researchers and the Royal Canadian Mounted Police National Forensic Laboratory Services, can cut the need for extra levels of human analysis, reducing the waiting time to find out the cause of a deliberately set fire.

That means quicker turnaround on answers for fire investigators, said Mark Sandercock, manager of trace evidence program support for the RCMP's National Forensic Laboratory Services, and a co-author on the research.

"Having results back in a timely way on physical evidence can only improve an investigation," Sandercock said. "By getting the laboratory results back quickly, investigators can use this information to ask the right questions when interviewing people or evaluating other evidence, which will help them resolve the case more quickly by pointing them in the right direction."

The U of A study, published recently in Forensic Science International, is the first to use a mathematical model to successfully classify debris pulled from suspected arson scenes, going beyond research based solely on simulated debris.

Harynuk's team began working with the RCMP's forensic lab in 2008, looking to develop tools for interpreting chemical data. Arson investigation was a logical fit.

"Arson debris provides an interesting set of samples because it is uncontrolled," Harynuk said. "You never know what is going to be in the fire, or how it started. Paint thinners, gasoline, kerosene are all very complex mixtures, and we wanted to develop a tool that would be able to pick a complex signature out of an equally complex background."

Volatile compounds released in a fire can mask the vital chemical data that RCMP scientists need to pinpoint, Sandercock noted. "It can be like looking for a needle in a haystack."

Currently, an RCMP forensic scientist examines data from a sample, which is then re-examined by a second scientist to see whether they agree on the findings—a process that can take hours per sample. The average arson investigation yields three or four samples.

The technology developed at the University of Alberta would allow the first scientist to run findings through the computer program, getting an answer in seconds. Only if the computer gave a result different from that of the scientist would the debris sample go to a second human analyst.

For their work, Harynuk and his team focused on gasoline, the most commonly used ignitable liquid in arsons. They analyzed data from 232 chemical samples provided by the RCMP's lab services, drawn from fire debris in cases under investigation across Canada. From chemical profiles taken from burned carpet, wood and cloth, they were able to develop a computer filter that isolated the signature of gasoline in the data. This signature was then used to indicate whether or not gasoline was present in the debris sample, a possible indicator of it being used to start a fire.

"It's a system that is quite accurate and goes down a similar investigative path that a human would when looking at the data," Harynuk said.

###

The research was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), Alberta Innovates – Technology Futures and the U of A's Department of Chemistry.

Bev Betkowski | Eurek Alert!
Further information:
http://www.ualberta.ca

Further reports about: Engineering Laboratory NSERC forensic gasoline investigators mathematical

More articles from Information Technology:

nachricht Researchers 3-D print electronics and cells directly on skin
26.04.2018 | University of Minnesota

nachricht Cheap 3-D printer can produce self-folding materials
25.04.2018 | Carnegie Mellon University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Why we need erasable MRI scans

26.04.2018 | Medical Engineering

Balancing nuclear and renewable energy

26.04.2018 | Power and Electrical Engineering

Researchers 3-D print electronics and cells directly on skin

26.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>