Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer program could help solve arson cases

25.04.2014

Sifting through the chemical clues left behind by arson is delicate, time-consuming work, but University of Alberta researchers teaming with RCMP scientists in Canada, have found a way to speed the process.

A computer program developed by University of Alberta chemistry professor James Harynuk, his team of graduate and undergraduate researchers and the Royal Canadian Mounted Police National Forensic Laboratory Services, can cut the need for extra levels of human analysis, reducing the waiting time to find out the cause of a deliberately set fire.

That means quicker turnaround on answers for fire investigators, said Mark Sandercock, manager of trace evidence program support for the RCMP's National Forensic Laboratory Services, and a co-author on the research.

"Having results back in a timely way on physical evidence can only improve an investigation," Sandercock said. "By getting the laboratory results back quickly, investigators can use this information to ask the right questions when interviewing people or evaluating other evidence, which will help them resolve the case more quickly by pointing them in the right direction."

The U of A study, published recently in Forensic Science International, is the first to use a mathematical model to successfully classify debris pulled from suspected arson scenes, going beyond research based solely on simulated debris.

Harynuk's team began working with the RCMP's forensic lab in 2008, looking to develop tools for interpreting chemical data. Arson investigation was a logical fit.

"Arson debris provides an interesting set of samples because it is uncontrolled," Harynuk said. "You never know what is going to be in the fire, or how it started. Paint thinners, gasoline, kerosene are all very complex mixtures, and we wanted to develop a tool that would be able to pick a complex signature out of an equally complex background."

Volatile compounds released in a fire can mask the vital chemical data that RCMP scientists need to pinpoint, Sandercock noted. "It can be like looking for a needle in a haystack."

Currently, an RCMP forensic scientist examines data from a sample, which is then re-examined by a second scientist to see whether they agree on the findings—a process that can take hours per sample. The average arson investigation yields three or four samples.

The technology developed at the University of Alberta would allow the first scientist to run findings through the computer program, getting an answer in seconds. Only if the computer gave a result different from that of the scientist would the debris sample go to a second human analyst.

For their work, Harynuk and his team focused on gasoline, the most commonly used ignitable liquid in arsons. They analyzed data from 232 chemical samples provided by the RCMP's lab services, drawn from fire debris in cases under investigation across Canada. From chemical profiles taken from burned carpet, wood and cloth, they were able to develop a computer filter that isolated the signature of gasoline in the data. This signature was then used to indicate whether or not gasoline was present in the debris sample, a possible indicator of it being used to start a fire.

"It's a system that is quite accurate and goes down a similar investigative path that a human would when looking at the data," Harynuk said.

###

The research was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), Alberta Innovates – Technology Futures and the U of A's Department of Chemistry.

Bev Betkowski | Eurek Alert!
Further information:
http://www.ualberta.ca

Further reports about: Engineering Laboratory NSERC forensic gasoline investigators mathematical

More articles from Information Technology:

nachricht Micropatterning OLEDs using electron beam technology
27.04.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Quantum computing closer as RMIT drives towards first quantum data bus
18.04.2016 | RMIT University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

New fabrication and thermo-optical tuning of whispering gallery microlasers

04.05.2016 | Physics and Astronomy

Introducing the disposable laser

04.05.2016 | Physics and Astronomy

A new vortex identification method for 3-D complex flow

04.05.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>