Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer program could help solve arson cases

25.04.2014

Sifting through the chemical clues left behind by arson is delicate, time-consuming work, but University of Alberta researchers teaming with RCMP scientists in Canada, have found a way to speed the process.

A computer program developed by University of Alberta chemistry professor James Harynuk, his team of graduate and undergraduate researchers and the Royal Canadian Mounted Police National Forensic Laboratory Services, can cut the need for extra levels of human analysis, reducing the waiting time to find out the cause of a deliberately set fire.

That means quicker turnaround on answers for fire investigators, said Mark Sandercock, manager of trace evidence program support for the RCMP's National Forensic Laboratory Services, and a co-author on the research.

"Having results back in a timely way on physical evidence can only improve an investigation," Sandercock said. "By getting the laboratory results back quickly, investigators can use this information to ask the right questions when interviewing people or evaluating other evidence, which will help them resolve the case more quickly by pointing them in the right direction."

The U of A study, published recently in Forensic Science International, is the first to use a mathematical model to successfully classify debris pulled from suspected arson scenes, going beyond research based solely on simulated debris.

Harynuk's team began working with the RCMP's forensic lab in 2008, looking to develop tools for interpreting chemical data. Arson investigation was a logical fit.

"Arson debris provides an interesting set of samples because it is uncontrolled," Harynuk said. "You never know what is going to be in the fire, or how it started. Paint thinners, gasoline, kerosene are all very complex mixtures, and we wanted to develop a tool that would be able to pick a complex signature out of an equally complex background."

Volatile compounds released in a fire can mask the vital chemical data that RCMP scientists need to pinpoint, Sandercock noted. "It can be like looking for a needle in a haystack."

Currently, an RCMP forensic scientist examines data from a sample, which is then re-examined by a second scientist to see whether they agree on the findings—a process that can take hours per sample. The average arson investigation yields three or four samples.

The technology developed at the University of Alberta would allow the first scientist to run findings through the computer program, getting an answer in seconds. Only if the computer gave a result different from that of the scientist would the debris sample go to a second human analyst.

For their work, Harynuk and his team focused on gasoline, the most commonly used ignitable liquid in arsons. They analyzed data from 232 chemical samples provided by the RCMP's lab services, drawn from fire debris in cases under investigation across Canada. From chemical profiles taken from burned carpet, wood and cloth, they were able to develop a computer filter that isolated the signature of gasoline in the data. This signature was then used to indicate whether or not gasoline was present in the debris sample, a possible indicator of it being used to start a fire.

"It's a system that is quite accurate and goes down a similar investigative path that a human would when looking at the data," Harynuk said.

###

The research was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), Alberta Innovates – Technology Futures and the U of A's Department of Chemistry.

Bev Betkowski | Eurek Alert!
Further information:
http://www.ualberta.ca

Further reports about: Engineering Laboratory NSERC forensic gasoline investigators mathematical

More articles from Information Technology:

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

nachricht Data analysis optimizes cyber-physical systems in telecommunications and building automation
18.01.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>