Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer predicts reactions between molecules and surfaces, with 'chemical precision'

10.11.2009
Good news for heterogeneous catalysis and the hydrogen economy: computers can now be used to make accurate predictions of the reactions of (hydrogen) molecules with surfaces.

An international team of researchers, headed by Leiden theoretical chemist Geert-Jan Kroes, published on this subject this week in the journal Science.

Hydrogen on copper

The team developed a new method of modelling what happens when hydrogen molecules separate on a copper surface. The way is now open for calculating the interaction between more complex molecules and surfaces.

Chemical processes on surfaces

Kroes: 'It's amazing how little we actually know about chemical processes on surfaces. Processes that take place openly and under our very noses.' Even the interaction between hydrogen – with its two atoms, the simplest of all molecules – and metal surfaces is so complex that it has so far never been possible to describe what happens with quantitative precision.

Catalytic converters

Yet at the same time the reaction of molecules with surfaces is highly important for society. Their interaction plays a crucial role in heterogeneous catalysis whereby surfaces function as an intermediary allowing two other substances to react with one another. This is what happens with catalysers in cars, for example, and also in the production of the majority of synthetic compounds.

Storage of hydrogen

In the specific case of hydrogen, the interaction between a metal surface and hydrogen molecules also has an important function in the storage of hydrogen, in its turn one of the mainstays in the use of hydrogen as a clean fuel. Separation of hydrogen molecules into two atoms is generally the first step in chemical hydrogen storage methods.

Forcefield

Research into chemical reactions is no longer restricted to the lab; complex computer calculations have become an essential element of this research. Since the sixties, theoreticians have tried to find methods of calculating the forcefield between the atoms of the molecules that are involved in the reactions of molecules with surfaces. The forces between the atoms and therefore the barriers for the activation of energy exert an exponential influence on reaction speed.

Different subsystems

The more precise the calculations of the inter-atomic forcefield, the more precise the prediction of the reactions that take place between molecules and surface. However, it is very difficult to calculate the force field, because it calls for an accurate description of two totally different subsystems: that of individual molecules and that of complete metal surfaces.

Chemical precision

Kroes and his team members have now developed a method of making computer models of an important class of molecule-surface reactions, namely the dissociation of hydrogen on a metal surface, with so-called chemical precision.

Margin of error: 1 kilocalorie per mol

Kroes: ' "Chemical precision" means that we can calculate the energy of the interaction between molecules and surface with a margin of error not greater than 1 kilocalorie per mol. The kilocalorie is the unit of energy familiar to us from diet lists, and a mol is the unit that expresses the number of molecules. There are about 6 x 1023 molecules in one mol. To give you an idea: 1 mol of water weights approximately 18 grams.'

The method

To achieve "chemical precision" an advance first had to be made in so-called density function theory (DFT). In this theory, the Hohenberg-Kohn theorems state that the energy of the system (and therefore also the reaction barrier) is determined by the density of the electrons in the system. However, the theory does not explain how exactly the energy is determined from the electron density. The trick that the Leiden researchers applied is to take a so-called functional with a parameter that could be fitted to one experiment on the reaction of 'heavy hydrogen' (D2) with copper. The functional gives the energy as a function of the electron density. Subsequent calculations showed that other experiments on the reaction of H2 on that copper surface could be reproduced accurately using the same functional.

International team

Kroes worked together with former postdoc Cristina Díaz (now at the Universidad Autónoma Madrid), former PhD researcher Ernst Pijper (now working at SARA Reken- en Netwerkdiensten in Amsterdam), Roar Olsen from Oslo, who previously worked at the Vrije Universiteit and at the Theoretical Chemistry department in Leiden, Fabio Busnengo (Universidad Naçional de Rosario, Argentina) and Daniel Auerbach (GRT Inc., Santa Barbara USA). The calculations were made by the Huygens super-computer SARA Reken- en Netwerkdiensten in Amsterdam.

Geert-Jan Kroes has conducted research into molecule-surface reactions for many years, and into the chemistry behind the hydrogen economy.

Chemically accurate simulation of a prototypical surface reaction: H2 dissociation on Cu(111).
C. Díaz, E. Pijper, R.A. Olsen, H.F. Busnengo, D.J. Auerbach, G.J. Kroes.
Science 6 November 2009.

Prof Geert-Jan Kroes | EurekAlert!
Further information:
http://www.leidenuniv.nl

More articles from Information Technology:

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

nachricht Data analysis optimizes cyber-physical systems in telecommunications and building automation
18.01.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>