Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer predicts reactions between molecules and surfaces, with 'chemical precision'

10.11.2009
Good news for heterogeneous catalysis and the hydrogen economy: computers can now be used to make accurate predictions of the reactions of (hydrogen) molecules with surfaces.

An international team of researchers, headed by Leiden theoretical chemist Geert-Jan Kroes, published on this subject this week in the journal Science.

Hydrogen on copper

The team developed a new method of modelling what happens when hydrogen molecules separate on a copper surface. The way is now open for calculating the interaction between more complex molecules and surfaces.

Chemical processes on surfaces

Kroes: 'It's amazing how little we actually know about chemical processes on surfaces. Processes that take place openly and under our very noses.' Even the interaction between hydrogen – with its two atoms, the simplest of all molecules – and metal surfaces is so complex that it has so far never been possible to describe what happens with quantitative precision.

Catalytic converters

Yet at the same time the reaction of molecules with surfaces is highly important for society. Their interaction plays a crucial role in heterogeneous catalysis whereby surfaces function as an intermediary allowing two other substances to react with one another. This is what happens with catalysers in cars, for example, and also in the production of the majority of synthetic compounds.

Storage of hydrogen

In the specific case of hydrogen, the interaction between a metal surface and hydrogen molecules also has an important function in the storage of hydrogen, in its turn one of the mainstays in the use of hydrogen as a clean fuel. Separation of hydrogen molecules into two atoms is generally the first step in chemical hydrogen storage methods.

Forcefield

Research into chemical reactions is no longer restricted to the lab; complex computer calculations have become an essential element of this research. Since the sixties, theoreticians have tried to find methods of calculating the forcefield between the atoms of the molecules that are involved in the reactions of molecules with surfaces. The forces between the atoms and therefore the barriers for the activation of energy exert an exponential influence on reaction speed.

Different subsystems

The more precise the calculations of the inter-atomic forcefield, the more precise the prediction of the reactions that take place between molecules and surface. However, it is very difficult to calculate the force field, because it calls for an accurate description of two totally different subsystems: that of individual molecules and that of complete metal surfaces.

Chemical precision

Kroes and his team members have now developed a method of making computer models of an important class of molecule-surface reactions, namely the dissociation of hydrogen on a metal surface, with so-called chemical precision.

Margin of error: 1 kilocalorie per mol

Kroes: ' "Chemical precision" means that we can calculate the energy of the interaction between molecules and surface with a margin of error not greater than 1 kilocalorie per mol. The kilocalorie is the unit of energy familiar to us from diet lists, and a mol is the unit that expresses the number of molecules. There are about 6 x 1023 molecules in one mol. To give you an idea: 1 mol of water weights approximately 18 grams.'

The method

To achieve "chemical precision" an advance first had to be made in so-called density function theory (DFT). In this theory, the Hohenberg-Kohn theorems state that the energy of the system (and therefore also the reaction barrier) is determined by the density of the electrons in the system. However, the theory does not explain how exactly the energy is determined from the electron density. The trick that the Leiden researchers applied is to take a so-called functional with a parameter that could be fitted to one experiment on the reaction of 'heavy hydrogen' (D2) with copper. The functional gives the energy as a function of the electron density. Subsequent calculations showed that other experiments on the reaction of H2 on that copper surface could be reproduced accurately using the same functional.

International team

Kroes worked together with former postdoc Cristina Díaz (now at the Universidad Autónoma Madrid), former PhD researcher Ernst Pijper (now working at SARA Reken- en Netwerkdiensten in Amsterdam), Roar Olsen from Oslo, who previously worked at the Vrije Universiteit and at the Theoretical Chemistry department in Leiden, Fabio Busnengo (Universidad Naçional de Rosario, Argentina) and Daniel Auerbach (GRT Inc., Santa Barbara USA). The calculations were made by the Huygens super-computer SARA Reken- en Netwerkdiensten in Amsterdam.

Geert-Jan Kroes has conducted research into molecule-surface reactions for many years, and into the chemistry behind the hydrogen economy.

Chemically accurate simulation of a prototypical surface reaction: H2 dissociation on Cu(111).
C. Díaz, E. Pijper, R.A. Olsen, H.F. Busnengo, D.J. Auerbach, G.J. Kroes.
Science 6 November 2009.

Prof Geert-Jan Kroes | EurekAlert!
Further information:
http://www.leidenuniv.nl

More articles from Information Technology:

nachricht A novel hybrid UAV that may change the way people operate drones
28.03.2017 | Science China Press

nachricht Timing a space laser with a NASA-style stopwatch
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>