Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New computer model advances climate change research

19.08.2010
Scientists can now study climate change in far more detail with powerful new computer software released by the National Center for Atmospheric Research (NCAR).

The Community Earth System Model (CESM) will be one of the primary climate models used for the next assessment by the Intergovernmental Panel on Climate Change (IPCC). The CESM is the latest in a series of NCAR-based global models developed over the last 30 years. The models are jointly supported by the Department of Energy (DOE) and the National Science Foundation, which is NCAR’s sponsor.

Scientists and engineers at NCAR, DOE laboratories, and several universities developed the CESM.

The new model’s advanced capabilities will help scientists shed light on some of the critical mysteries of global warming, including:

What impact will warming temperatures have on the massive ice sheets in Greenland and Antarctica?

How will patterns in the ocean and atmosphere affect regional climate in coming decades?

How will climate change influence the severity and frequency of tropical cyclones, including hurricanes?

What are the effects of tiny airborne particles, known as aerosols, on clouds and temperatures?


Modeling climate’s complexity. This image, taken from a larger simulation of 20th century climate, depicts several aspects of Earth’s climate system. Sea surface temperatures and sea ice concentrations are shown by the two color scales. The figure also captures sea level pressure and low-level winds, including warmer air moving north on the eastern side of low-pressure regions and colder air moving south on the western side of the lows. Such simulations, produced by the NCAR-based Community Climate System Model, can also depict additional features of the climate system, such as precipitation. Companion software, recently released as the Community Earth System Model, will enable scientists to study the climate system in even greater complexity. (©UCAR) News media terms of use*The CESM is one of about a dozen climate models worldwide that can be used to simulate the many components of Earth’s climate system, including the oceans, atmosphere, sea ice, and land cover. The CESM and its predecessors are unique among these models in that they were developed by a broad community of scientists. The model is freely available to researchers worldwide.

“With the Community Earth System Model, we can pursue scientific questions that we could not address previously,” says NCAR scientist James Hurrell, chair of the scientific steering committee that developed the model. “Thanks to its improved physics and expanded biogeochemistry, it gives us a better representation of the real world.”

Scientists rely on computer models to better understand Earth’s climate system because they cannot conduct large-scale experiments on the atmosphere itself. Climate models, like weather models, rely on a three-dimensional mesh that reaches high into the atmosphere and into the oceans. At regularly spaced intervals, or grid points, the models use laws of physics to compute atmospheric and environmental variables, simulating the exchanges among gases, particles, and energy across the atmosphere.

Because climate models cover far longer periods than weather models, they cannot include as much detail. Thus, climate projections appear on regional to global scales rather than local scales. This approach enables researchers to simulate global climate over years, decades, or millennia. To verify a model's accuracy, scientists typically simulate past conditions and then compare the model results to actual observations.

A broader view of our climate system
The CESM builds on the Community Climate System Model, which NCAR scientists and collaborators have regularly updated since first developing it more than a decade ago. The new model enables scientists to gain a broader picture of Earth’s climate system by incorporating more influences. Using the CESM, researchers can now simulate the interaction of marine ecosystems with greenhouse gases; the climatic influence of ozone, dust, and other atmospheric chemicals; the cycling of carbon through the atmosphere, oceans, and land surfaces; and the influence of greenhouse gases on the upper atmosphere.

In addition, an entirely new representation of atmospheric processes in the CESM will allow researchers to pursue a much wider variety of applications, including studies of air quality and biogeochemical feedback mechanisms.

Scientists have begun using both the CESM and the Community Climate System Model for an ambitious set of climate experiments to be featured in the next IPCC assessment reports, scheduled for release during 2013–14. Most of the simulations in support of that assessment are scheduled to be completed and publicly released beginning in late 2010, so that the broader research community can complete its analyses in time for inclusion in the assessment. The new IPCC report will include information on regional climate change in coming decades.

Using the CESM, Hurrell and other scientists hope to learn more about ocean-atmosphere patterns such as the North Atlantic Oscillation and the Pacific Decadal Oscillation, which affect sea surface temperatures as well as atmospheric conditions. Such knowledge, Hurrell says, can eventually lead to forecasts spanning several years of potential weather impacts, such as a particular region facing a high probability of drought, or another region likely facing several years of cold and wet conditions.

"Decision makers in diverse arenas need to know the extent to which the climate events they see are the product of natural variability, and hence can be expected to reverse at some point, or are the result of potentially irreversible, human-influenced climate change,” Hurrell says. “CESM will be a major tool to address such questions."

David Hosansky | EurekAlert!
Further information:
http://www.ucar.edu

More articles from Information Technology:

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Glycosylation: Mapping Uncharted Territory

21.09.2017 | Life Sciences

Highly precise wiring in the Cerebral Cortex

21.09.2017 | Health and Medicine

Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?

21.09.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>