Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer Hardware 'Guardians' Protect Users from Undiscovered Bugs

06.10.2008
As computer processor chips grow faster and more complex, they are likely to make it to market with more design bugs. But that may be OK, according to University of Michigan researchers who have devised a system that lets chips work around all functional bugs, even those that haven't been detected.

Firms such as Intel find functional bugs by simulating different scenarios, commands and configurations that their processor might encounter. Bugs only show themselves when they're triggered by certain configurations. When firms find major bugs, they fix them. But because it would be virtually impossible to simulate all possibilities, engineers don't find all the bugs.

Buggy hardware inadvertently released to customers could fail. Short of replacing the product, there isn't much a company can do to fix the problem today.

The U-M researchers' system would eliminate this risk by building a virtual fence that prevents a chip from operating in untested configurations. The approach keeps track of all the configurations the firm did test, and loads that information onto a miniscule monitor that would be added to each processor.

The monitor, called a semantic guardian, keeps the chip operating within its virtual fence. It works by switching the processor into a slower, bare-bones, safe mode when the chip encounters a configuration that has not been validated. In this way, the monitor would treat all untested configurations as potential threats.

This guardian isn't as controlling as it may sound, the researchers say.

"If you consider all the possible configurations of the processor, only a tiny fraction of them is verified. But that tiny portion accounts for the configurations that occur 99.9 percent of the time," said Valeria Bertacco, assistant professor in the Department of Electrical Engineering and Computer Science.

"Users wouldn't even notice when their processor switched to safe mode," Bertacco said. "It would happen infrequently, and it would only last momentarily, to get the computer through the uncharted territory. Then the chip would flip back to its regular mode."

Bertacco says this system would be akin to turning a motorcycle into a bicycle briefly when a rider encounters a rough patch of road. Then the rider could pedal over the bumps without crashing.

The vast majority of a processor's components are there for speed, Bertacco says. A chip in safe mode still operates properly and can perform all necessary functions.

The guardian would take only a small fraction of the microprocessor's area with a imperceptible performance impact, which the researchers assert is a small price to pay to eliminate the risks of buggy hardware.

This system could also protect against what could be hackers' next frontier: exploiting hardware design bugs in order to gain control of other computers. This threat has been in the news lately, as independent security researcher Kris Kaspersky announced plans to demonstrate a hardware bug exploit that can take over a machine, independent of its applications, operating system, or patch level. He is scheduled to demonstrate this attack at the upcoming Hack in the Box Security Conference, Oct. 27-30.

"Semantic guardians would stop these security attackers dead in their tracks, since the processor would no longer be able to execute the buggy configurations that they were planning to exploit, said Ilya Wagner, a doctoral student in the Department of Electrical Engineering and Computer Science.

Wagner presents this research Sept. 29 at the Gigascale System Research Center's annual meeting, where industry and government funding agencies come together to learn about new research results. He and Bertacco are authors of a paper called Engineering Trust with Semantic Guardians, which they presented at the Design Automation and Test in Europe Conference in April 2007. It is available online at http://www.eecs.umich.edu/~valeria/research/publications/DATE07Guardians.pdf.

For more information:
Valeria Bertacco: http://www.eecs.umich.edu/~valeria/
Ilya Wagner: http://www.eecs.umich.edu/~ivagner/
Michigan Engineering:
The University of Michigan College of Engineering is ranked among the top engineering schools in the country. At more than $130 million annually, its engineering research budget is one of largest of any public university. Michigan Engineering is home to 11 academic departments and a National Science Foundation Engineering Research Center. The college plays a leading role in the Michigan Memorial Phoenix Energy Institute and hosts the world class Lurie Nanofabrication Facility. Michigan Engineering's premier scholarship, international scale and multidisciplinary scope combine to create The Michigan Difference.

Nicole Casal Moore | Newswise Science News
Further information:
http://www.umich.edu
http://www.engin.umich.edu/

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>