Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer Calculates Correct Conjecture

25.01.2011
A solution that counts: long-standing mathematical conjecture finally proved

A conjecture presented in 1985 - the Andrews and Robbins conjecture - has recently been proved for the first time. It is thus clear that the structure which goes by the name of "totally symmetric plane partitions" can be described using a single formula. Producing the proof required vast computer resources and was only possible after the formula had been prepared for computer-assisted calculation.

This finding by a Austrian Science Fund FWF supported research group based in Linz, Austria will be published in the Proceedings of the National Academy of Sciences today. The proof means that the last of a long list of famous mathematical conjectures relating to plane partitions has finally been proved.

Even mathematicians play with building blocks. At least if they are interested in so-called plane partitions, which are visualized with columns of "building blocks" (cubes) on a surface resembling a chessboard. When "building" such plane partitions, the mathematicians must adhere to certain rules: No column may be higher than the width of the surface, or than another column behind it or left of it. The question of how many column permutations may be built on a given surface area is easily answered, thanks to a specific formula. However, it becomes trickier if the permutations must follow stipulated symmetries, or if, instead of counting the permutations, you wish to count its constituents. Although formulas have been designed to do this too, the crux of the matter is that not all of these formulas have really been proved to be accurate. It is only conjectured.

THE PROOF IS IN THE COMPUTER
The proof that one of these formulas is correct has now been found by Dr. Christoph Koutschan and Dr. Manuel Kauers from the Research Institute for Symbolic Computation of the Johannes Kepler University Linz, Austria, in cooperation with Prof. Doron Zeilberger from the United States. It is a formula that is employed for calculating the individual components in totally symmetric plane partitions. Dr. Koutschan comments on the special method they used to find the proof: "We let the computer do the work! In some areas of mathematics this has long been a matter of routine." The underlying principle of such computer-assisted proof is simple. In order to prove A=B, the computer calculates an adjoint equation U=V with the following two properties: "If U=V is true, then A=B is also true" and "it is easy to verify that U=V".

Although it may sound easy, it represents a great challenge, according to Dr. Koutschan: "This method does not work for every equation. The most important step was for us to convert the Andrews-Robbins conjecture into a suitable form for the computer to be able to prove it." The fact that the adjoint equation was really somewhat more complex than "U=V", is illustrated by its size: if it were printed, it would cover approximately 1 million A4 pages, which makes it probably the longest equation ever used in a mathematical proof.

STANLEY`S LIST
In the end, the work that was spent on the "formulation" was well worth it. With the proof of the Andrews and Robbins conjecture, the scientists have managed to prove the last of a number of famous conjectures, which were presented by US mathematician Richard Stanley at a historic conference in Montreal in 1985. In the years following the conference, all of these conjectures were proved except for the Andrews and Robbins conjecture. Dr. Kauers comments: "As the last remaining item on Stanley s list, this conjecture attracted the attention of many experts. Still, it remained unproved for almost thirty years. The proof was finally obtained with an automatic method, which goes to show that modern computer programs can crack mathematical problems where traditional mathematicians fall short."

Granted, such successful results are still an exception. However, this FWF project underscores the potential of computer-based proof. Given the great pace at which computer performance is advancing, such methods will perhaps one day even offer answers to the great unsolved questions in mathematics.

Image and text will be available from Tuesday, 25th January 2011, 9 am CET onwards:

http://www.fwf.ac.at/en/public_relations/press/pv201101-2en.html

Original publication: A proof of George Andrews` and David Robbins` q-TSPP conjecture. C. Koutschan, M. Kauers, D. Zeilberger. DOI: 10.1073/pnas.1019186108

Scientific contact:
PD Dr. Manuel Kauers
Johannes Kepler University
Research Institute for Symbolic Computation Altenberger Straße 69 4040 Linz, Austria
T: +43/732/2468 9958
E: Manuel.Kauers@risc.jku.at
Austrian Science Fund (FWF)
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Vienna, Austria
T: +43/1/5056740-8111
E: stefan.bernhardt@fwf.ac.at
W: http.//www.fwf.ac.at
Copy Editing & Distribution
PR&D - Public Relations for Research & Education Mariannengasse 8 1090 Vienna, Austria
T: +43 / 1 / 505 70 44
E: contact@prd.at
W: http://www.prd.at

Jacqueline Bogdanovic | PR&D
Further information:
http://www.fwf.ac.at

More articles from Information Technology:

nachricht Cloud technology: Dynamic certificates make cloud service providers more secure
15.01.2018 | Technische Universität München

nachricht New discovery could improve brain-like memory and computing
10.01.2018 | University of Minnesota

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>