Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer Calculates Correct Conjecture

25.01.2011
A solution that counts: long-standing mathematical conjecture finally proved

A conjecture presented in 1985 - the Andrews and Robbins conjecture - has recently been proved for the first time. It is thus clear that the structure which goes by the name of "totally symmetric plane partitions" can be described using a single formula. Producing the proof required vast computer resources and was only possible after the formula had been prepared for computer-assisted calculation.

This finding by a Austrian Science Fund FWF supported research group based in Linz, Austria will be published in the Proceedings of the National Academy of Sciences today. The proof means that the last of a long list of famous mathematical conjectures relating to plane partitions has finally been proved.

Even mathematicians play with building blocks. At least if they are interested in so-called plane partitions, which are visualized with columns of "building blocks" (cubes) on a surface resembling a chessboard. When "building" such plane partitions, the mathematicians must adhere to certain rules: No column may be higher than the width of the surface, or than another column behind it or left of it. The question of how many column permutations may be built on a given surface area is easily answered, thanks to a specific formula. However, it becomes trickier if the permutations must follow stipulated symmetries, or if, instead of counting the permutations, you wish to count its constituents. Although formulas have been designed to do this too, the crux of the matter is that not all of these formulas have really been proved to be accurate. It is only conjectured.

THE PROOF IS IN THE COMPUTER
The proof that one of these formulas is correct has now been found by Dr. Christoph Koutschan and Dr. Manuel Kauers from the Research Institute for Symbolic Computation of the Johannes Kepler University Linz, Austria, in cooperation with Prof. Doron Zeilberger from the United States. It is a formula that is employed for calculating the individual components in totally symmetric plane partitions. Dr. Koutschan comments on the special method they used to find the proof: "We let the computer do the work! In some areas of mathematics this has long been a matter of routine." The underlying principle of such computer-assisted proof is simple. In order to prove A=B, the computer calculates an adjoint equation U=V with the following two properties: "If U=V is true, then A=B is also true" and "it is easy to verify that U=V".

Although it may sound easy, it represents a great challenge, according to Dr. Koutschan: "This method does not work for every equation. The most important step was for us to convert the Andrews-Robbins conjecture into a suitable form for the computer to be able to prove it." The fact that the adjoint equation was really somewhat more complex than "U=V", is illustrated by its size: if it were printed, it would cover approximately 1 million A4 pages, which makes it probably the longest equation ever used in a mathematical proof.

STANLEY`S LIST
In the end, the work that was spent on the "formulation" was well worth it. With the proof of the Andrews and Robbins conjecture, the scientists have managed to prove the last of a number of famous conjectures, which were presented by US mathematician Richard Stanley at a historic conference in Montreal in 1985. In the years following the conference, all of these conjectures were proved except for the Andrews and Robbins conjecture. Dr. Kauers comments: "As the last remaining item on Stanley s list, this conjecture attracted the attention of many experts. Still, it remained unproved for almost thirty years. The proof was finally obtained with an automatic method, which goes to show that modern computer programs can crack mathematical problems where traditional mathematicians fall short."

Granted, such successful results are still an exception. However, this FWF project underscores the potential of computer-based proof. Given the great pace at which computer performance is advancing, such methods will perhaps one day even offer answers to the great unsolved questions in mathematics.

Image and text will be available from Tuesday, 25th January 2011, 9 am CET onwards:

http://www.fwf.ac.at/en/public_relations/press/pv201101-2en.html

Original publication: A proof of George Andrews` and David Robbins` q-TSPP conjecture. C. Koutschan, M. Kauers, D. Zeilberger. DOI: 10.1073/pnas.1019186108

Scientific contact:
PD Dr. Manuel Kauers
Johannes Kepler University
Research Institute for Symbolic Computation Altenberger Straße 69 4040 Linz, Austria
T: +43/732/2468 9958
E: Manuel.Kauers@risc.jku.at
Austrian Science Fund (FWF)
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Vienna, Austria
T: +43/1/5056740-8111
E: stefan.bernhardt@fwf.ac.at
W: http.//www.fwf.ac.at
Copy Editing & Distribution
PR&D - Public Relations for Research & Education Mariannengasse 8 1090 Vienna, Austria
T: +43 / 1 / 505 70 44
E: contact@prd.at
W: http://www.prd.at

Jacqueline Bogdanovic | PR&D
Further information:
http://www.fwf.ac.at

More articles from Information Technology:

nachricht Drones that drive
27.06.2017 | Massachusetts Institute of Technology, CSAIL

nachricht Ahead of the Curve
27.06.2017 | Institute of Science and Technology Austria

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

For a chimpanzee, one good turn deserves another

27.06.2017 | Life Sciences

Collapse of the European ice sheet caused chaos

27.06.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>