Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computational Process Zeroes in on Top Genetic Cancer Suspects

03.09.2009
Johns Hopkins engineers have devised innovative computer software that can sift through hundreds of genetic mutations and highlight the DNA changes that are most likely to promote cancer.

The goal is to provide critical help to researchers who are poring over numerous newly discovered gene mutations, many of which are harmless or have no connection to cancer. According to its inventors, the new software will enable these scientists to focus more of their attention on the mutations most likely to trigger tumors.

A description of the method and details of a test using it on brain cancer DNA were published in the August 15 issue of the journal Cancer Research.

The new process focuses on missense mutations, meaning protein sequences that each possess a single tiny variation from the normal pattern. A small percentage of these genetic errors can reduce the activity of proteins that usually suppress tumors or hyperactivate proteins that make it easier for tumors to grow, thereby allowing cancer to develop and spread. But finding these genetic offenders can be difficult.

“It’s very expensive and time-consuming to test a huge number of gene mutations, trying to find the few that have a solid link to cancer,” said Rachel Karchin, an assistant professor of biomedical engineering who supervised the development of the computational sorting approach. “Our new screening system should dramatically speed up efforts to identify genetic cancer risk factors and help find new targets for cancer-fighting medications.”

The new computational method is called CHASM, short for Cancer-specific High-throughput Annotation of Somatic Mutations.

Developing this system required a partnership of researchers from diverse disciplines. Karchin and doctoral student Hannah Carter drew on their skills as members of the university's Institute for Computational Medicine, which uses powerful information management and computing technologies to address important health problems, and collaborated with leading Johns Hopkins cancer and biostatistics experts from the university’s School of Medicine, its Bloomberg School of Public Health and the Johns Hopkins Kimmel Cancer Center.

The team first narrowed the field of about 600 potential brain cancer culprits using a computational method that would sort these mutations into “drivers” and “passengers.” Driver mutations are those that initiate or promote the growth of tumors. Passenger mutations are those that are present when a tumor forms but appear to play no role in its formation or growth. In other words, the passenger mutations are only along for the ride.

To prepare for the sorting, the researchers used a machine-learning technique in which about 50 characteristics or properties associated with cancer-causing mutations were given numerical values and programmed into the system. Karchin and Carter then employed a math technique called a Random Forest classifier to help separate and rank the drivers and the passengers. In this step, 500 computational “decision trees” considered each mutation to decide whether it possessed the key characteristics associated with promoting cancer. Eventually, each “tree” cast a vote: Was the gene a driver or a passenger?

“It’s a little like the children’s game of ‘Guess Who,’ where you ask a series of yes or no questions to eliminate certain people until you narrow it down to a few remaining suspects,” said Carter, who earned her undergraduate and master’s degrees at the University of Louisville and served as lead author of the Cancer Research paper. “In this case, the decision trees asked questions to figure out which mutations were most likely to be implicated in cancer.”

The election results—such as how many driver votes a mutation received—were used to produce a ranking. The genetic errors that collected the most driver votes wound up at the top of the list. The ones with the most passenger votes were placed near the bottom. With a list like this in hand, the software developers said, cancer researchers can direct more of their time and energy to the mutations at the top of the rankings.

Karchin and Carter plan to post their system on the Web and will allow researchers worldwide to use it freely to prioritize their studies. Because different genetic characteristics are associated with different types of cancers, they said the method can easily be adapted to rank the mutations that may be linked to different forms of the disease, such as breast cancer or lung cancer.

In addition to Karchin and Carter, the Johns Hopkins co-authors of the Cancer Research paper were Sining Chen, Leyla Isik, Svitlana Tyekucheva, Victor E. Velculescu, Kenneth W. Kinzler and Bert Vogelstein.

Funding for the research was provided by the National Cancer Institute, the Susan G. Komen Foundation, the Virginia and D. K. Ludwig Fund for Cancer Research and the National Institutes of Health.

Color images of the researchers available; Contact Phil Sneiderman.

Related links:
Rachel Karchin’s Lab Page: http://karchinlab.org/
Department of Biomedical Engineering: http://www.bme.jhu.edu/
Johns Hopkins Institute for Computational Medicine: http://www.icm.jhu.edu/
Johns Hopkins Kimmel Cancer Center: http://www.hopkinskimmelcancercenter.org/

Phil Sneiderman | Newswise Science News
Further information:
http://www.jhu.edu

More articles from Information Technology:

nachricht Rules for superconductivity mirrored in 'excitonic insulator'
08.12.2017 | Rice University

nachricht Smartphone case offers blood glucose monitoring on the go
08.12.2017 | University of California - San Diego

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>