Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computational biologists from Saarbrücken simplify diagnosis for hereditary diseases

29.07.2014

In the case of a cough or a sore throat, the doctor can usually diagnose a common cold immediately.

However, the diagnosis of hereditary illnesses like cystic fibrosis, which affects the metabolism, or Huntington’s disease, which leads to cognitive decline, is much more complex. A patient may suffer from a multitude of symptoms, pointing to several different diseases.

This can now be remediated using a program developed by bioinformatics experts from Saarbrücken, which is now also available as an app. With the aid of this application, physicians can discover patients’ afflictions quickly and without great research effort.

The computing method that the program is based on compares different patterns of hereditary diseases from an extensive online database and weights them by their likelihood.

Diseases like diabetes, epilepsy, a heart defect or deafness can themselves be symptoms of a range of hereditary diseases. „That makes it so difficult for medical specialists to diagnose someone with the correct disease from the beginning“, says Marcel Schulz, who is leader of the research group „ High-throughput Genomics & Systems Biology“ at the Max Planck Institute for Informatics and also a researcher at the Cluster of Excellence „Multimodal Computing and Interaction“.

„Additionally, each disease appears with different characteristics in different patients“. In the case of a heart defect, for instance, the patient may not only be afflicted by the defect itself, but could also be suffering from the Miller-Dieker syndrome or Cat eye syndrome, depending on the patient’s other symptoms.

Together with physicians and computational biologists from the working group of Professor Dr. Peter Robinson at the Charité clinical center in Berlin, Schulz has developed the program „Phenomizer“, which can be used by doctors to discover what the patient is afflicted with. This approach can be used for various hereditary illnesses like trisomy 21, Morbus Wilson or the Marfan syndrome.

„We are using an extensive online data base developed at Charité, called the ‘Human Phenotype Ontology’,,which lists more than 10 000 disease characteristics structurally and assigns them to 7500 diseases“, explains Schulz.

The computing method scans, compares and weights the data related to the symptoms the user provided, and then assigns these characteristics to certain diseases. Within seconds, the doctor receives a list with the most probable results. The advantage of the program is clear to Schulz:

„The doctors no longer have to research in databases or books for several hours. The list supports them in detecting the disease more quickly. Moreover, doctors can ask patients about their symptoms in greater detail. This makes it easier to assess which aspects they need to pay attention to.

The Phenomizer program has recently been made available online as an Android version for smartphones and tablets. It can be downloaded for free from the „Google Play“ platform. „We developed the app together with six different computer scientists from Saarbrücken“, explains Schulz. The students created the app within the context of a software engineering course at Saarland University.

The Phenomizer app is available for free on Google Play.

Background information about Computer Science research at Saarland University
The Department of Computer Science represents the center of Computer Science research in Saarbrücken. Seven other internationally renowned research institutes are nearby: The Max Planck Institutes for Informatics and for Software Systems, the German Research Center for Artificial Intelligence (DFKI), the Center for Bioinformatics, the Intel Visual Computing Institute, the Center for IT Security, Privacy and Accountability (CISPA), and the Cluster of Excellence “Multimodal Computing and Interaction”.
See more at: http://www.mmci.uni-saarland.de/en/news/article/?article_id=233#sthash.7RgThJfj....

The app is available at:
https://play.google.com/store/apps/details?id=com.charite.phenomizer&hl=de

Further information:
The program Phenomizer online:
http://compbio.charite.de/phenomizer/

Publications:
Exact Score distribution computation for ontological similarity measures, Schulz et al., BMC Bioinformatics 2011
http://www.biomedcentral.com/1471-2105/12/441

Clinical diagnostics in human genetics with semantic similarity searches in ontologies, Köhler et al. The American Journal of Human Genetics 2009
http://www.sciencedirect.com/science/article/pii/S0002929709003991

A press picture is available at: www.uni-saarland.de/pressefotos
Please pay attention to the terms of use.

Press inquiries:
Dr. Marcel Schulz
Computational Biology and Applied Algorithms
Max Planck Institute for Informatics
Phone: +49 681 93253115
Mail: mschulz@mpi-inf.mpg.de

Editor:
Gordon Bolduan
Science Communication
Competence Center Computer Science Saarland
Mail: bolduan(at)mmci.uni-saarland.de
Phone: +49 681 30270741

Weitere Informationen:

http://compbio.charite.de/phenomizer/

Friederike Meyer zu Tittingdorf | idw - Informationsdienst Wissenschaft

More articles from Information Technology:

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Smart Manual Workstations Deliver More Flexible Production
04.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>