Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computational biologists from Saarbrücken simplify diagnosis for hereditary diseases

29.07.2014

In the case of a cough or a sore throat, the doctor can usually diagnose a common cold immediately.

However, the diagnosis of hereditary illnesses like cystic fibrosis, which affects the metabolism, or Huntington’s disease, which leads to cognitive decline, is much more complex. A patient may suffer from a multitude of symptoms, pointing to several different diseases.

This can now be remediated using a program developed by bioinformatics experts from Saarbrücken, which is now also available as an app. With the aid of this application, physicians can discover patients’ afflictions quickly and without great research effort.

The computing method that the program is based on compares different patterns of hereditary diseases from an extensive online database and weights them by their likelihood.

Diseases like diabetes, epilepsy, a heart defect or deafness can themselves be symptoms of a range of hereditary diseases. „That makes it so difficult for medical specialists to diagnose someone with the correct disease from the beginning“, says Marcel Schulz, who is leader of the research group „ High-throughput Genomics & Systems Biology“ at the Max Planck Institute for Informatics and also a researcher at the Cluster of Excellence „Multimodal Computing and Interaction“.

„Additionally, each disease appears with different characteristics in different patients“. In the case of a heart defect, for instance, the patient may not only be afflicted by the defect itself, but could also be suffering from the Miller-Dieker syndrome or Cat eye syndrome, depending on the patient’s other symptoms.

Together with physicians and computational biologists from the working group of Professor Dr. Peter Robinson at the Charité clinical center in Berlin, Schulz has developed the program „Phenomizer“, which can be used by doctors to discover what the patient is afflicted with. This approach can be used for various hereditary illnesses like trisomy 21, Morbus Wilson or the Marfan syndrome.

„We are using an extensive online data base developed at Charité, called the ‘Human Phenotype Ontology’,,which lists more than 10 000 disease characteristics structurally and assigns them to 7500 diseases“, explains Schulz.

The computing method scans, compares and weights the data related to the symptoms the user provided, and then assigns these characteristics to certain diseases. Within seconds, the doctor receives a list with the most probable results. The advantage of the program is clear to Schulz:

„The doctors no longer have to research in databases or books for several hours. The list supports them in detecting the disease more quickly. Moreover, doctors can ask patients about their symptoms in greater detail. This makes it easier to assess which aspects they need to pay attention to.

The Phenomizer program has recently been made available online as an Android version for smartphones and tablets. It can be downloaded for free from the „Google Play“ platform. „We developed the app together with six different computer scientists from Saarbrücken“, explains Schulz. The students created the app within the context of a software engineering course at Saarland University.

The Phenomizer app is available for free on Google Play.

Background information about Computer Science research at Saarland University
The Department of Computer Science represents the center of Computer Science research in Saarbrücken. Seven other internationally renowned research institutes are nearby: The Max Planck Institutes for Informatics and for Software Systems, the German Research Center for Artificial Intelligence (DFKI), the Center for Bioinformatics, the Intel Visual Computing Institute, the Center for IT Security, Privacy and Accountability (CISPA), and the Cluster of Excellence “Multimodal Computing and Interaction”.
See more at: http://www.mmci.uni-saarland.de/en/news/article/?article_id=233#sthash.7RgThJfj....

The app is available at:
https://play.google.com/store/apps/details?id=com.charite.phenomizer&hl=de

Further information:
The program Phenomizer online:
http://compbio.charite.de/phenomizer/

Publications:
Exact Score distribution computation for ontological similarity measures, Schulz et al., BMC Bioinformatics 2011
http://www.biomedcentral.com/1471-2105/12/441

Clinical diagnostics in human genetics with semantic similarity searches in ontologies, Köhler et al. The American Journal of Human Genetics 2009
http://www.sciencedirect.com/science/article/pii/S0002929709003991

A press picture is available at: www.uni-saarland.de/pressefotos
Please pay attention to the terms of use.

Press inquiries:
Dr. Marcel Schulz
Computational Biology and Applied Algorithms
Max Planck Institute for Informatics
Phone: +49 681 93253115
Mail: mschulz@mpi-inf.mpg.de

Editor:
Gordon Bolduan
Science Communication
Competence Center Computer Science Saarland
Mail: bolduan(at)mmci.uni-saarland.de
Phone: +49 681 30270741

Weitere Informationen:

http://compbio.charite.de/phenomizer/

Friederike Meyer zu Tittingdorf | idw - Informationsdienst Wissenschaft

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>