Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computational biologists assist global network of researcher teams in developing new medicines

28.02.2011
Many years can pass before a newly developed medicine can enter the market. Computational biologists in Saarbrücken and Tübingen would like to speed up this long and tedious process. They have developed the software BALLView, with which new active agents can be conceptualized and visualized. Now international research teams can meet on the web and work with three-dimensional molecular models together on their monitors.

Researchers from the Center for Bioinformatics in Saarbrücken will present a prototype of the new platform together with the Saarland University Intel Visual Computing Institute at the CeBIT 2011 in Hanover from March 1st through the 5th at the Saarland University research booth (hall 9, booth B43).

“If you are looking to find the right key for a lock, you have to be able to spatially visualize it. It is no different for researchers who need to comprehend the chemical and spatial forms and structures of molecules in order to develop new medicines,” Andreas Hildebrandt explains. He leads the research group at Saarland University that, together with computational biologists in Tübingen, has developed the freely available Software BALL (Biochemical ALgorithms Library), to which the visualization component BALLView has been added. With the help of BALLView, you can dive into the 3D virtual world of active agent molecules, DNA and viruses. This better spatial view makes it easier for the viewer to find the “key agent molecule” which geometrically and chemically fits the three-dimensional “lock”, the so-called receptor molecule, in the human body.

International research teams from different fields are working together closely from different sites to better understand these complex mechanisms. “Up to now, they could not work on the same three-dimensional models simultaneously because of limited network capacities and problems with data security, among other things,” the bioinformatician explains. For this reason, the research team in Saarbrücken is expanding its software by so-called collaborative functions. These enable researchers to do complex molecular modeling together on the Internet, simultaneously. The 3D technology needed for this was developed by Professor Philipp Slusallek and his research team from the Saarland University Intel Visual Computing Institute and the German Research Center for Artificial Intelligence (DFKI). The expansion of ordinary web browsers allows complex 3D graphics to be displayed.

“This new web technology was integrated into the BALLView software. And now researchers can also share and exchange their ideas directly in a chat window in BALLView,” Hildebrandt explains. The software works with a special visualization method called ray tracing which very realistically displays the spatial structures of molecules with lighting, shadows and reflections. It can be looked at with the help of a virtual reality setup or simply on a standard 3D television set. “Two images are superimposed, allowing the viewer to see them with enormous depth through 3D glasses and get an extremely realistic spatial impression. He can also move the proteins and viruses directly on the screen as well as zoom into and edit individual sections,” says Andreas Hildebrandt, who will soon take on a professorship at the university in Mainz. Visitors to the computer trade fair Cebit can give this new technology a try on a 3D television.

Press photos: www.uni-saarland.de/pressefotos

Contact:

Dr. Andreas Hildebrandt
E-Mail: anhi@bioinf.uni-sb.de
Friederike Meyer zu Tittingdorf
Tel. + 49 681 / 302-3610
Mobil + 49 151 / 11 37 16 32
Tel: + 49 511 / 89 49 70 22 (Cebit booth)
Information for radio journalists: If you would like to arrange a telephone interview with researchers and students from Saarland University in studio quality (Audio-ISDN-Codec), please contact Friederike Meyer zu Tittingdorf at the press office.

Saar - Uni - Presseteam | idw
Further information:
http://www.ballview.org

More articles from Information Technology:

nachricht Supercomputing the emergence of material behavior
18.05.2018 | University of Texas at Austin, Texas Advanced Computing Center

nachricht Keeping a Close Eye on Ice Loss
18.05.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>