Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computational biologists assist global network of researcher teams in developing new medicines

28.02.2011
Many years can pass before a newly developed medicine can enter the market. Computational biologists in Saarbrücken and Tübingen would like to speed up this long and tedious process. They have developed the software BALLView, with which new active agents can be conceptualized and visualized. Now international research teams can meet on the web and work with three-dimensional molecular models together on their monitors.

Researchers from the Center for Bioinformatics in Saarbrücken will present a prototype of the new platform together with the Saarland University Intel Visual Computing Institute at the CeBIT 2011 in Hanover from March 1st through the 5th at the Saarland University research booth (hall 9, booth B43).

“If you are looking to find the right key for a lock, you have to be able to spatially visualize it. It is no different for researchers who need to comprehend the chemical and spatial forms and structures of molecules in order to develop new medicines,” Andreas Hildebrandt explains. He leads the research group at Saarland University that, together with computational biologists in Tübingen, has developed the freely available Software BALL (Biochemical ALgorithms Library), to which the visualization component BALLView has been added. With the help of BALLView, you can dive into the 3D virtual world of active agent molecules, DNA and viruses. This better spatial view makes it easier for the viewer to find the “key agent molecule” which geometrically and chemically fits the three-dimensional “lock”, the so-called receptor molecule, in the human body.

International research teams from different fields are working together closely from different sites to better understand these complex mechanisms. “Up to now, they could not work on the same three-dimensional models simultaneously because of limited network capacities and problems with data security, among other things,” the bioinformatician explains. For this reason, the research team in Saarbrücken is expanding its software by so-called collaborative functions. These enable researchers to do complex molecular modeling together on the Internet, simultaneously. The 3D technology needed for this was developed by Professor Philipp Slusallek and his research team from the Saarland University Intel Visual Computing Institute and the German Research Center for Artificial Intelligence (DFKI). The expansion of ordinary web browsers allows complex 3D graphics to be displayed.

“This new web technology was integrated into the BALLView software. And now researchers can also share and exchange their ideas directly in a chat window in BALLView,” Hildebrandt explains. The software works with a special visualization method called ray tracing which very realistically displays the spatial structures of molecules with lighting, shadows and reflections. It can be looked at with the help of a virtual reality setup or simply on a standard 3D television set. “Two images are superimposed, allowing the viewer to see them with enormous depth through 3D glasses and get an extremely realistic spatial impression. He can also move the proteins and viruses directly on the screen as well as zoom into and edit individual sections,” says Andreas Hildebrandt, who will soon take on a professorship at the university in Mainz. Visitors to the computer trade fair Cebit can give this new technology a try on a 3D television.

Press photos: www.uni-saarland.de/pressefotos

Contact:

Dr. Andreas Hildebrandt
E-Mail: anhi@bioinf.uni-sb.de
Friederike Meyer zu Tittingdorf
Tel. + 49 681 / 302-3610
Mobil + 49 151 / 11 37 16 32
Tel: + 49 511 / 89 49 70 22 (Cebit booth)
Information for radio journalists: If you would like to arrange a telephone interview with researchers and students from Saarland University in studio quality (Audio-ISDN-Codec), please contact Friederike Meyer zu Tittingdorf at the press office.

Saar - Uni - Presseteam | idw
Further information:
http://www.ballview.org

More articles from Information Technology:

nachricht Efficient time synchronization of sensor networks by means of time series analysis
24.01.2017 | Alpen-Adria-Universität Klagenfurt

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>