Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Coming Revolution in Artificial Intelligence

04.04.2012
As computer scientists this year celebrate the 100th anniversary of the birth of the mathematical genius Alan Turing, who set out the basis for digital computing in the 1930s to anticipate the electronic age, they still quest after a machine as adaptable and intelligent as the human brain.

Now, computer scientist Hava Siegelmann of the University of Massachusetts Amherst, an expert in neural networks, has taken Turing’s work to its next logical step. She is translating her 1993 discovery of what she has dubbed “Super-Turing” computation into an adaptable computational system that learns and evolves, using input from the environment in a way much more like our brains do than classic Turing-type computers. She and her post-doctoral research colleague Jeremie Cabessa report on the advance in the current issue of Neural Computation.

“This model is inspired by the brain,” she says. “It is a mathematical formulation of the brain’s neural networks with their adaptive abilities.” The authors show that when the model is installed in an environment offering constant sensory stimuli like the real world, and when all stimulus-response pairs are considered over the machine’s lifetime, the Super Turing model yields an exponentially greater repertoire of behaviors than the classical computer or Turing model. They demonstrate that the Super-Turing model is superior for human-like tasks and learning.

“Each time a Super-Turing machine gets input it literally becomes a different machine,” Siegelmann says. “You don’t want this for your PC. They are fine and fast calculators and we need them to do that. But if you want a robot to accompany a blind person to the grocery store, you’d like one that can navigate in a dynamic environment. If you want a machine to interact successfully with a human partner, you’d like one that can adapt to idiosyncratic speech, recognize facial patterns and allow interactions between partners to evolve just like we do. That’s what this model can offer.”

Classical computers work sequentially and can only operate in the very orchestrated, specific environments for which they were programmed. They can look intelligent if they’ve been told what to expect and how to respond, Siegelmann says. But they can’t take in new information or use it to improve problem-solving, provide richer alternatives or perform other higher-intelligence tasks.

In 1948, Turing himself predicted another kind of computation that would mimic life itself, but he died without developing his concept of a machine that could use what he called “adaptive inference.” In 1993, Siegelmann, then at Rutgers, showed independently in her doctoral thesis that a very different kind of computation, vastly different from the “calculating computer” model and more like Turing’s prediction of life-like intelligence, was possible. She published her findings in Science and in a book shortly after.

“I was young enough to be curious, wanting to understand why the Turing model looked really strong,” she recalls. “I tried to prove the conjecture that neural networks are very weak and instead found that some of the early work was faulty. I was surprised to find out via mathematical analysis that the neural models had some capabilities that surpass the Turing model. So I re-read Turing and found that he believed there would be an adaptive model that was stronger based on continuous calculations.”

Each step in Siegelmann’s model starts with a new Turing machine that computes once and then adapts. The size of the set of natural numbers is represented by the notation aleph-zero, representing also the number of different infinite calculations possible by classical Turing machines in a real-world environment on continuously arriving inputs. By contrast, Siegelmann’s most recent analysis demonstrates that Super-Turing computation has 2 to the power aleph-zero, possible behaviors. “If the Turing machine had 300 behaviors, the Super-Turing would have 2300, more than the number of atoms in the observable universe,” she explains.

The new Super-Turing machine will not only be flexible and adaptable but economical. This means that when presented with a visual problem, for example, it will act more like our human brains and choose salient features in the environment on which to focus, rather than using its power to visually sample the entire scene as a camera does. This economy of effort, using only as much attention as needed, is another hallmark of high artificial intelligence, Siegelmann says.

“If a Turing machine is like a train on a fixed track, a Super-Turing machine is like an airplane. It can haul a heavy load, but also move in endless directions and vary its destination as needed. The Super-Turing framework allows a stimulus to actually change the computer at each computational step, behaving in a way much closer to that of the constantly adapting and evolving brain,” she adds.

Siegelmann and two colleagues recently were notified that they will receive a grant to make the first ever Super-Turing computer, based on Analog Recurrent Neural Networks. The device is expected to introduce a level of intelligence not seen before in artificial computation.

Hava Siegelmann
413/577-4282
hava@cs.umass.edu

Hava Siegelmann | Newswise Science News
Further information:
http://www.umass.edu

More articles from Information Technology:

nachricht Information integration and artificial intelligence for better diagnosis and therapy decisions
24.05.2017 | Fraunhofer MEVIS - Institut für Bildgestützte Medizin

nachricht World's thinnest hologram paves path to new 3-D world
18.05.2017 | RMIT University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>