Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cloud computing speeds up problem solving and saves energy

28.11.2011
This work studies how grid and cloud computing can be applied to efficiently solving propositional satisfiability problem (SAT) instances.

Propositional logic provides a convenient language for expressing real-world originated problems such as AI planning, automated test pattern generation, bounded model checking and cryptanalysis. The interest in SAT solving has increased mainly due to improvements in the solving algorithms, which recently have increasingly focused on using parallelism offered by multi-CPU computers.

Partly orthogonally to these improvements this work studies several novel approaches to parallel solving of SAT instances in a grid of widely distributed "virtual" computers instead of workstations or supercomputers.

The doctoral dissertation of Licentiate of Science (Technology) Antti Hyvärinen examines the solving of hard structured problems using cloud computing. According to Hyvärinen, cloud computing can significantly speed up problem solving and save energy. Cloud computing means decentralising IT services so that tens, hundreds or thousands of distributed computers can be used simultaneously.

Hyvärinen says that solving practical problems often requires going through large amounts of data efficiently and performing automatic inference based on the material. For instance, when the link between certain genes and the onset of a disease is studied, the material from which correlations should be found can be extremely extensive.

− Cloud computing speeds up solving a problem because it is possible to use thousands of computers instead of just one. Instead of spending ten years looking for a solution, the computers may solve the problem in a matter of hours.

Hyvärinen explains that decentralising computers also saves energy.

− Computers produce a lot of heat and there is a major demand for computing capacity in large cities in the south. Due to the warm climate in these areas, cooling the heat produced by the computers consumes a lot of electricity.

Speed requires parallel computing

Hyvärinen says that the speed of computer processors, which execute program commands, will no longer increase significantly. If we want faster results in the future, all computing should be performed in parallel by several computers.

However, parallel programming is difficult. The dissertation presents several analytical and experimental results that offer solutions to the problems related to parallel processes. These new methods can be used to solve several previously unsolved problems for the first time. In practice, certain algorithms have been developed so that they can more efficiently make use of several processors simultaneously, decreasing the computational time.

Hyvärinen uses a propositional logic to model structured problems. Due to its general nature, this logic enables the modelling of different types of problems from bioinformatics to artificial intelligence design.

The doctoral dissertation of Antti Hyvärinen, “Grid Based Propositional Satisfiability Solving”, will be examined at the School of Science Department of Information and Computer Science on 28 November 2011 at noon (lecture hall T2, Konemiehentie 2, Espoo).

The dissertation is available online at: http://lib.tkk.fi/Diss/
http://lib.tkk.fi/Diss/2011/isbn9789526043685/isbn9789526043685.pdf

Terhi Arvela | alfa
Further information:
http://www.aalto.fi

More articles from Information Technology:

nachricht A novel hybrid UAV that may change the way people operate drones
28.03.2017 | Science China Press

nachricht Timing a space laser with a NASA-style stopwatch
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>