Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cloud Computing: Cornell’s Weatherspoon Aims to Fix Internet ‘Potholes’

17.10.2011
To avoid the congestion of the public internet, scientists, the military and the managers of huge “cloud computing” data centers have created private information superhighways – dedicated fiber-optic systems known as lambda networks. As it turns out, these private internet highways are riddled with potholes.

To look into the glitch causes – and their possible cures – in what were supposed to be perfect systems, Hakim Weatherspoon, Cornell assistant professor of computer science, has received a National Science Foundation (NSF) Early Career Award, designed to support young researchers exploring cutting-edge ideas, of about $600,000, and more than $750,000 from the Defense Advanced Projects Research Administration (DARPA) Computer Science Study Panel. DARPA also will provide access to military computer facilities for testing.

Using extremely precise sending and receiving devices, Weatherspoon and colleagues have found that the pulses of laser light representing the ones and zeros of computer communication may start out evenly spaced, but sometimes arrive at their destination in a bumper-to-bumper “convoy,” hitting the receiving computer faster than it can process them. (Think of Lucille Ball trying to keep up with the candy factory assembly line.) Data can be corrupted, and data packets that are dropped have to be resent, slowing the system down.

Weatherspoon uses Cornell’s membership in the National Lambda Rail high-speed fiber-optic research network to create “Cornell NLR Rings,” dedicated loops that start in Ithaca and carry data packets to New York, Chicago, Denver or, in the largest loop, through Seattle and Los Angeles and finally back home.

Weathersoon, physics postdoctoral researcher Daniel Freedman and graduate student Tudor Marian developed an apparatus that uses a precisely modulated laser to generate packets of optical signals to send around these loops, then analyze what comes back with sub-picosecond accuracy. The original instrument, known as the Software Defined Network Adapter, was an assembly of lasers and oscilloscopes from a physics lab, taking up significant floor space. The NSF funding will support development of the next generation, the Software-defined Network Interface Card (SoNIC), a standard accessory card that plugs into any computer. SoNIC cards will be available to other researchers, Weatherspoon said.

Measurements with the original device showed that data glitches increase with the number of “hops” a signal takes. Weatherspoon believes this shows that the problem lies in the routers the signals must pass through on their travels. Routers read the addresses incorporated in incoming optical data packets and resend them on the best route to their destination. Some routers may let packets pile up and then send them out in bursts, like a row of cars that have pulled up at a traffic light and then started off all together, Weatherspoon suggests. The exact cause of this phenomenon is not yet known, he said, but the effect is clear.

The direct computer interface of the SoNIC device will allow the researchers to observe network behavior in real time and run software that tweaks the signals they send on the fly. They are not limited to the standard protocols of the Internet, but can create data packets in any form they choose, to develop and test new formats that will avoid or correct for the glitches introduced in transit.

Blaine Friedlander | Newswise Science News
Further information:
http://www.cornell.edu

Further reports about: Cloud Computing DARPA NSF Pervasive Computing Science TV Sonic Weatherspoon optical signal

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>