Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cloud Computing: Cornell’s Weatherspoon Aims to Fix Internet ‘Potholes’

17.10.2011
To avoid the congestion of the public internet, scientists, the military and the managers of huge “cloud computing” data centers have created private information superhighways – dedicated fiber-optic systems known as lambda networks. As it turns out, these private internet highways are riddled with potholes.

To look into the glitch causes – and their possible cures – in what were supposed to be perfect systems, Hakim Weatherspoon, Cornell assistant professor of computer science, has received a National Science Foundation (NSF) Early Career Award, designed to support young researchers exploring cutting-edge ideas, of about $600,000, and more than $750,000 from the Defense Advanced Projects Research Administration (DARPA) Computer Science Study Panel. DARPA also will provide access to military computer facilities for testing.

Using extremely precise sending and receiving devices, Weatherspoon and colleagues have found that the pulses of laser light representing the ones and zeros of computer communication may start out evenly spaced, but sometimes arrive at their destination in a bumper-to-bumper “convoy,” hitting the receiving computer faster than it can process them. (Think of Lucille Ball trying to keep up with the candy factory assembly line.) Data can be corrupted, and data packets that are dropped have to be resent, slowing the system down.

Weatherspoon uses Cornell’s membership in the National Lambda Rail high-speed fiber-optic research network to create “Cornell NLR Rings,” dedicated loops that start in Ithaca and carry data packets to New York, Chicago, Denver or, in the largest loop, through Seattle and Los Angeles and finally back home.

Weathersoon, physics postdoctoral researcher Daniel Freedman and graduate student Tudor Marian developed an apparatus that uses a precisely modulated laser to generate packets of optical signals to send around these loops, then analyze what comes back with sub-picosecond accuracy. The original instrument, known as the Software Defined Network Adapter, was an assembly of lasers and oscilloscopes from a physics lab, taking up significant floor space. The NSF funding will support development of the next generation, the Software-defined Network Interface Card (SoNIC), a standard accessory card that plugs into any computer. SoNIC cards will be available to other researchers, Weatherspoon said.

Measurements with the original device showed that data glitches increase with the number of “hops” a signal takes. Weatherspoon believes this shows that the problem lies in the routers the signals must pass through on their travels. Routers read the addresses incorporated in incoming optical data packets and resend them on the best route to their destination. Some routers may let packets pile up and then send them out in bursts, like a row of cars that have pulled up at a traffic light and then started off all together, Weatherspoon suggests. The exact cause of this phenomenon is not yet known, he said, but the effect is clear.

The direct computer interface of the SoNIC device will allow the researchers to observe network behavior in real time and run software that tweaks the signals they send on the fly. They are not limited to the standard protocols of the Internet, but can create data packets in any form they choose, to develop and test new formats that will avoid or correct for the glitches introduced in transit.

Blaine Friedlander | Newswise Science News
Further information:
http://www.cornell.edu

Further reports about: Cloud Computing DARPA NSF Pervasive Computing Science TV Sonic Weatherspoon optical signal

More articles from Information Technology:

nachricht NASA CubeSat to test miniaturized weather satellite technology
10.11.2017 | NASA/Goddard Space Flight Center

nachricht New approach uses light instead of robots to assemble electronic components
08.11.2017 | The Optical Society

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>