Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cloud Computing: Cornell’s Weatherspoon Aims to Fix Internet ‘Potholes’

17.10.2011
To avoid the congestion of the public internet, scientists, the military and the managers of huge “cloud computing” data centers have created private information superhighways – dedicated fiber-optic systems known as lambda networks. As it turns out, these private internet highways are riddled with potholes.

To look into the glitch causes – and their possible cures – in what were supposed to be perfect systems, Hakim Weatherspoon, Cornell assistant professor of computer science, has received a National Science Foundation (NSF) Early Career Award, designed to support young researchers exploring cutting-edge ideas, of about $600,000, and more than $750,000 from the Defense Advanced Projects Research Administration (DARPA) Computer Science Study Panel. DARPA also will provide access to military computer facilities for testing.

Using extremely precise sending and receiving devices, Weatherspoon and colleagues have found that the pulses of laser light representing the ones and zeros of computer communication may start out evenly spaced, but sometimes arrive at their destination in a bumper-to-bumper “convoy,” hitting the receiving computer faster than it can process them. (Think of Lucille Ball trying to keep up with the candy factory assembly line.) Data can be corrupted, and data packets that are dropped have to be resent, slowing the system down.

Weatherspoon uses Cornell’s membership in the National Lambda Rail high-speed fiber-optic research network to create “Cornell NLR Rings,” dedicated loops that start in Ithaca and carry data packets to New York, Chicago, Denver or, in the largest loop, through Seattle and Los Angeles and finally back home.

Weathersoon, physics postdoctoral researcher Daniel Freedman and graduate student Tudor Marian developed an apparatus that uses a precisely modulated laser to generate packets of optical signals to send around these loops, then analyze what comes back with sub-picosecond accuracy. The original instrument, known as the Software Defined Network Adapter, was an assembly of lasers and oscilloscopes from a physics lab, taking up significant floor space. The NSF funding will support development of the next generation, the Software-defined Network Interface Card (SoNIC), a standard accessory card that plugs into any computer. SoNIC cards will be available to other researchers, Weatherspoon said.

Measurements with the original device showed that data glitches increase with the number of “hops” a signal takes. Weatherspoon believes this shows that the problem lies in the routers the signals must pass through on their travels. Routers read the addresses incorporated in incoming optical data packets and resend them on the best route to their destination. Some routers may let packets pile up and then send them out in bursts, like a row of cars that have pulled up at a traffic light and then started off all together, Weatherspoon suggests. The exact cause of this phenomenon is not yet known, he said, but the effect is clear.

The direct computer interface of the SoNIC device will allow the researchers to observe network behavior in real time and run software that tweaks the signals they send on the fly. They are not limited to the standard protocols of the Internet, but can create data packets in any form they choose, to develop and test new formats that will avoid or correct for the glitches introduced in transit.

Blaine Friedlander | Newswise Science News
Further information:
http://www.cornell.edu

Further reports about: Cloud Computing DARPA NSF Pervasive Computing Science TV Sonic Weatherspoon optical signal

More articles from Information Technology:

nachricht Information integration and artificial intelligence for better diagnosis and therapy decisions
24.05.2017 | Fraunhofer MEVIS - Institut für Bildgestützte Medizin

nachricht World's thinnest hologram paves path to new 3-D world
18.05.2017 | RMIT University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>