Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clear predictions

25.04.2014

Computer modeling is assisting the design of optical modulators with low losses to improve optical communications

Modulators are key components within optical fiber networks and serve to transfer information from an electrical current to a signal suitable for optical fibers. They function by turning a light beam on and off quickly and the faster they can do this, the more data that can be transmitted.


The two plots show the distribution of electrical charges in different designs of modulator. Compared to a previous design (top), the modulator improved by computer modeling (bottom) contains fewer free electrical charges, as depicted by lighter shades of blue (positive charge) and yellow (negative charge).

Copyright : 2014 A*STAR Institute of High Performance Computing

An increase in data traffic creates a need for a reduction in the cost and size of optical components. An improved low-loss design for modulators, suitable for silicon computer chips, has been developed by Soon Thor Lim and colleagues from the A*STAR Institute of High Performance Computing, the A*STAR Institute of Microelectronics and collaborators from Fujikura Ltd.

Existing optical modulators are based on lithium niobate, a material that is expensive and unsuitable for silicon chips. While silicon offers an inexpensive alternative, it can only be used with the addition of other elements that can create positive and negative movable electrical charges. Modulation requires the movable charges to be channeled in and out of the device by an alternating electrical voltage, which controls both the speed of light through the chip and the data rate. Light that passes through this region and crosses light that passes through a neutral silicon region creates interference effects in the optical beam that switches the light on and off.

Previous modulator designs contained charged regions that were relatively large, with the drawback that they increased light absorption in the chip. However, in the team’s proposed design, this area is reduced so that less of the laser beam passes through the charged region (see image).

After computer modeling the performance of the modulator, the team fabricated their device on a silicon chip that has light channels only 220 nanometers high and 550 nanometers wide. Compared to designs with large charged areas, these modulators reduced optical losses by up to 28 per cent and operated at faster speeds of 10 gigabits per second.

“Our device has a speed and optical losses comparable to existing technology such as lithium niobate,” says Lim. “One reason for this high performance is because we used highly accurate computer codes developed in-house.”

Successfully demonstrating the device also highlights how modeling software can reduce the required number of experiments, Lim adds. “Simulation and analysis helps to visualize the physical behavior of these cutting-edge optical devices. This can identify potential problems and circumvent the need for costly multiple design iterations ultimately accelerating the speed to market.”

The A*STAR-affiliated researchers contributing to this research are from the Institute of High Performance Computing and the Institute of Microelectronics 

Journal information

Goi, K., Ogawa, K., Tan, Y. T., Dixit, V., Lim, S. T. et al. Silicon Mach–Zehnder modulator using low-loss phase shifter with bottom PN junction formed by restricted-depth doping. IEICE Electronics Express 10, 20130552 (2013).

A*STAR Research | Research SEA News
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

Further reports about: A*STAR Computing Microelectronics Performance Science fiber nanometers networks reduction voltage

More articles from Information Technology:

nachricht New technique controls autonomous vehicles on a dirt track
24.05.2016 | Georgia Institute of Technology

nachricht Engineers take first step toward flexible, wearable, tricorder-like device
24.05.2016 | University of California - San Diego

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>