Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Chip-Scale Tunable Laser To Enable Bandwidth-On-Demand In Advanced Optical Networks


Researchers from A*STAR’s Institute of Microelectronics (IME) and Nanyang Technological University (NTU) have demonstrated the smallest wavelength-tunable laser fabricated by microelectromechanical system (MEMS) technology.

Telecommunication providers can deliver bandwidth-on-demand at higher profit margins with the Singapore-developed tunable laser 

Researchers from A*STAR’s Institute of Microelectronics (IME) and Nanyang Technological University (NTU) have demonstrated the smallest wavelength-tunable laser fabricated by microelectromechanical system (MEMS) technology.

The laser features a wide tuning range which enables telecommunications providers to cost-effectively expand system capacity in advanced optical networks to support high data packets at ultra fast speed. By having one laser, instead of several, that can generate light over a range of wavelengths, the network infrastructure is greatly simplified, and inventory and operational costs are dramatically reduced, thus strengthening the capability of telecommunications providers to deliver bandwidth-on-demand services at higher profit margins. 

To keep up with increasing consumer demands for faster internet connectivity and greater network coverage, service providers need to revamp their network architectures. In fibre-optic communications, advanced wavelength division multiplexing (WDM) networks typically rely on single wavelength laser sources, making them expensive, time-intensive, energy-inefficient and logistically impractical for service providers to increase their system capacity. 

On the other hand, commercial tunable lasers require multiple components in their set-up in order to achieve the necessary wide tuning range, thereby contributing to the bulkiness of these lasers and rendering them unsuitable for system integration.

To tackle these challenges, the joint team from IME and NTU has demonstrated an on-chip integrated laser, the smallest reported tunable laser fabricated by MEMS technology that can generate light from 1531.2 nm to 1579.5 nm of the near-infrared region, relevant to optical telecommunications. Compared to MEMS tunable laser based on external cavity design, the new laser significantly improves the coupling efficiency of 50% to more than 75% to offer wide tuning range using processing steps that are more streamlined and amenable to mass production. 

Presented at the prestigious 2013 International Electron Devices Meeting (IEDM) in the USA , the design uses simple packaging and provides ease of fabrication for mass production. This miniature on-chip system can also be readily integrated into high-density photonic circuits to achieve smaller form-factor. These distinct functionalities and highlights make the laser an attractive light source for next generation optical telecommunications, as well as in other spectroscopy applications.

Dr Cai Hong, the IME scientist who is leading the research project, commented, “Our laser exploits the superior light converging ability of the rod lens and parabolic mirror of the 3D micro-coupling system to achieve both wide wavelength tuning range and small form factor. In external cavity tunable lasers, wide tuning range is traditionally at the expense of small form factor.”

Professor Liu Ai Qun, from the School of Electrical and Electronic Engineering, NTU, said: “This new chip is very attractive to communications and biomedical device companies because of its small size and low cost. Our prototype, a 1 cm by 1 cm microchip, is the smallest tunable laser which can be easily manufactured as it is ten times smaller than most commercially available tunable laser devices. The key innovation was that our tunable laser is integrated onto a microchip using MEMs technology, made possible only through NTU’s strong expertise in MEMs, backed by a decade of solid research into single-chip solutions.”

“This breakthrough signifies the successful partnership enjoyed by IME and NTU, leveraging on each other’s strengths which led to the successful design, fabrication, packaging and characterisation of this new chip which is expected to impact industries which require tunable laser technology such as in optical fiber communications,” added Prof. Liu, who is also Programme Director at VALENS, an NTU research centre which focuses on bio-instrumentation, devices and signal processing, and has collaborations with many international industry partners.

Professor Dim-Lee Kwong, Executive Director of IME, said, “The tunable laser is a timely solution to address a key technological hurdle that is holding back the outreach of affordable, dynamic and versatile optical network services to consumers. We expect this breakthrough to augment IME’s capabilities in silicon photonics to enable product developers and relevant industries to get a head start in the optical networking space.”

Media Contact:
Dr Shin-Miin SONG
Research Publicity, Institute of Microelectronics A*STAR
DID: (65) 6770-5317

 About Institute of Microelectronics (IME)

The Institute of Microelectronics (IME) is a research institute of the Science and Engineering Research Council of the Agency for Science, Technology and Research (A*STAR). Positioned to bridge the R&D between academia and industry, IME's mission is to add value to Singapore's semiconductor industry by developing strategic competencies, innovative technologies and intellectual property; enabling enterprises to be technologically competitive; and cultivating a technology talent pool to inject new knowledge to the industry. Its key research areas are in integrated circuits design, advanced packaging, bioelectronics and medical devices, MEMS, nanoelectronics, and photonics. For more information about IME, please visit

About the Agency for Science, Technology and Research (A*STAR)

The Agency for Science, Technology and Research (A*STAR) is Singapore's lead public sector agency that fosters world-class scientific research and talent to drive economic growth and transform Singapore into a vibrant knowledge-based and innovation driven economy.

In line with its mission-oriented mandate, A*STAR spearheads research and development in fields that are essential to growing Singapore’s manufacturing sector and catalysing new growth industries. A*STAR supports these economic clusters by providing intellectual, human and industrial capital to its partners in industry.

A*STAR oversees 18 biomedical sciences and physical sciences and engineering research entities, located in Biopolis and Fusionopolis, as well as their vicinity. These two R&D hubs house a bustling and diverse community of local and international research scientists and engineers from A*STAR’s research entities as well as a growing number of corporate laboratories.

Please visit

Associated links

Lee Swee Heng | Research SEA
Further information:

Further reports about: A*STAR Advanced Chip-Scale IME MEMS Microelectronics Science fabrication lasers processing smallest wavelength

More articles from Information Technology:

nachricht TIB’s Visual Analytics Research Group to develop methods for person detection and visualisation
19.03.2018 | Technische Informationsbibliothek (TIB)

nachricht Green Light for Galaxy Europe
15.03.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>