Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chip-Scale Tunable Laser To Enable Bandwidth-On-Demand In Advanced Optical Networks

13.03.2014

Researchers from A*STAR’s Institute of Microelectronics (IME) and Nanyang Technological University (NTU) have demonstrated the smallest wavelength-tunable laser fabricated by microelectromechanical system (MEMS) technology.

Telecommunication providers can deliver bandwidth-on-demand at higher profit margins with the Singapore-developed tunable laser 

Researchers from A*STAR’s Institute of Microelectronics (IME) and Nanyang Technological University (NTU) have demonstrated the smallest wavelength-tunable laser fabricated by microelectromechanical system (MEMS) technology.

The laser features a wide tuning range which enables telecommunications providers to cost-effectively expand system capacity in advanced optical networks to support high data packets at ultra fast speed. By having one laser, instead of several, that can generate light over a range of wavelengths, the network infrastructure is greatly simplified, and inventory and operational costs are dramatically reduced, thus strengthening the capability of telecommunications providers to deliver bandwidth-on-demand services at higher profit margins. 

To keep up with increasing consumer demands for faster internet connectivity and greater network coverage, service providers need to revamp their network architectures. In fibre-optic communications, advanced wavelength division multiplexing (WDM) networks typically rely on single wavelength laser sources, making them expensive, time-intensive, energy-inefficient and logistically impractical for service providers to increase their system capacity. 

On the other hand, commercial tunable lasers require multiple components in their set-up in order to achieve the necessary wide tuning range, thereby contributing to the bulkiness of these lasers and rendering them unsuitable for system integration.

To tackle these challenges, the joint team from IME and NTU has demonstrated an on-chip integrated laser, the smallest reported tunable laser fabricated by MEMS technology that can generate light from 1531.2 nm to 1579.5 nm of the near-infrared region, relevant to optical telecommunications. Compared to MEMS tunable laser based on external cavity design, the new laser significantly improves the coupling efficiency of 50% to more than 75% to offer wide tuning range using processing steps that are more streamlined and amenable to mass production. 

Presented at the prestigious 2013 International Electron Devices Meeting (IEDM) in the USA , the design uses simple packaging and provides ease of fabrication for mass production. This miniature on-chip system can also be readily integrated into high-density photonic circuits to achieve smaller form-factor. These distinct functionalities and highlights make the laser an attractive light source for next generation optical telecommunications, as well as in other spectroscopy applications.

Dr Cai Hong, the IME scientist who is leading the research project, commented, “Our laser exploits the superior light converging ability of the rod lens and parabolic mirror of the 3D micro-coupling system to achieve both wide wavelength tuning range and small form factor. In external cavity tunable lasers, wide tuning range is traditionally at the expense of small form factor.”

Professor Liu Ai Qun, from the School of Electrical and Electronic Engineering, NTU, said: “This new chip is very attractive to communications and biomedical device companies because of its small size and low cost. Our prototype, a 1 cm by 1 cm microchip, is the smallest tunable laser which can be easily manufactured as it is ten times smaller than most commercially available tunable laser devices. The key innovation was that our tunable laser is integrated onto a microchip using MEMs technology, made possible only through NTU’s strong expertise in MEMs, backed by a decade of solid research into single-chip solutions.”

“This breakthrough signifies the successful partnership enjoyed by IME and NTU, leveraging on each other’s strengths which led to the successful design, fabrication, packaging and characterisation of this new chip which is expected to impact industries which require tunable laser technology such as in optical fiber communications,” added Prof. Liu, who is also Programme Director at VALENS, an NTU research centre which focuses on bio-instrumentation, devices and signal processing, and has collaborations with many international industry partners.

Professor Dim-Lee Kwong, Executive Director of IME, said, “The tunable laser is a timely solution to address a key technological hurdle that is holding back the outreach of affordable, dynamic and versatile optical network services to consumers. We expect this breakthrough to augment IME’s capabilities in silicon photonics to enable product developers and relevant industries to get a head start in the optical networking space.”

Media Contact:
Dr Shin-Miin SONG
Research Publicity, Institute of Microelectronics A*STAR
DID: (65) 6770-5317
Email: songsm@ime.a-star.edu.sg


 About Institute of Microelectronics (IME)

The Institute of Microelectronics (IME) is a research institute of the Science and Engineering Research Council of the Agency for Science, Technology and Research (A*STAR). Positioned to bridge the R&D between academia and industry, IME's mission is to add value to Singapore's semiconductor industry by developing strategic competencies, innovative technologies and intellectual property; enabling enterprises to be technologically competitive; and cultivating a technology talent pool to inject new knowledge to the industry. Its key research areas are in integrated circuits design, advanced packaging, bioelectronics and medical devices, MEMS, nanoelectronics, and photonics. For more information about IME, please visit http://www.ime.a-star.edu.sg

About the Agency for Science, Technology and Research (A*STAR)

The Agency for Science, Technology and Research (A*STAR) is Singapore's lead public sector agency that fosters world-class scientific research and talent to drive economic growth and transform Singapore into a vibrant knowledge-based and innovation driven economy.

In line with its mission-oriented mandate, A*STAR spearheads research and development in fields that are essential to growing Singapore’s manufacturing sector and catalysing new growth industries. A*STAR supports these economic clusters by providing intellectual, human and industrial capital to its partners in industry.

A*STAR oversees 18 biomedical sciences and physical sciences and engineering research entities, located in Biopolis and Fusionopolis, as well as their vicinity. These two R&D hubs house a bustling and diverse community of local and international research scientists and engineers from A*STAR’s research entities as well as a growing number of corporate laboratories.

Please visit www.a-star.edu.sg

Associated links

Lee Swee Heng | Research SEA
Further information:
http://www.researchsea.com

Further reports about: A*STAR Advanced Chip-Scale IME MEMS Microelectronics Science fabrication lasers processing smallest wavelength

More articles from Information Technology:

nachricht A novel hybrid UAV that may change the way people operate drones
28.03.2017 | Science China Press

nachricht Timing a space laser with a NASA-style stopwatch
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>