Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Toward cheap underwater sensor nets

28.05.2009
UC San Diego computer scientists are one step closer to building low cost networks of underwater sensors for real time underwater environmental monitoring.

At the IEEE Reconfigurable Architectures Workshop in Rome, Italy, on May 25, computer scientists from the Jacobs School of Engineering presented a paper highlighting the energy conservation benefits of using reconfigurable hardware rather than competing hardware platforms for their experimental underwater sensor nets.

While the Navy has used expensive sonar systems for underwater communications for years, scientists around the world urgently need low cost underwater sensor technologies that can capture and transmit environmental data back to land in real time, explained Bridget Benson, the UC San Diego computer science Ph.D. student leading the project.

The underwater sensors team at UC San Diego includes John Moffatt (left) a recent electrical engineering alumnus, Bridget Benson (center) a computer science Ph.D. student and Brian Faunce (right) an electrical engineering undergrad.

“We are building a low-cost, low-power modem for short-range, low data-rate underwater networking. Working underwater means you don’t have access to a wall socket for plug-in power. Our idea is to make the sensor and modem hardware as energy efficient as possible,” said Benson.

Greater energy efficiency means batteries can last longer and the sensors can sample the environment more frequently. Higher sampling rates can greatly increase the utility of the collected data and enable scientists to plan experiments when the conditions are just right.

Networks of underwater sensors could also serve as “stepping stones” that provide a way for data collected from underwater sensors to get back to land without any one sensor having to send a signal a long distance, which is costly in terms of energy consumption.

Reconfigurable hardware rises to the top

The computer scientists studied the patterns of energy consumption of underwater modems and determined that, for short distances, the hardware platform is a big power drain. With this in mind, the researchers looked at three different hardware platforms: digital signal processors, microcontrollers, and reconfigurable hardware. Their tests—described in the paper presented at the IEEE Workshop in Rome—show that the reconfigurable hardware platform provides the best low-energy implementation for the particular underwater communications algorithm they implemented.

“The amplifier works, but it is not yet as efficient as Don Kimball’s original design or the early simulations,” said electrical engineering undergraduate Brian Faunce, referring to Calit2 principal development engineer Don Kimball. “There is some sort of an optimization issue we still have to figure out.” “The impedance of the underwater transducer is much more complex than we originally thought” says Kimball.

“In class, you learn a lot of theory, but you don’t learn how to revise a schematic, layout the printed circuit board, assemble the circuit and then perform field tests. I have friends at other schools, and when it comes to internships and projects, they are just not available at other schools the way they are here,” said Faunce.

“Sensor networks are revolutionizing the way we understand our natural world. Unfortunately, the advances in the underwater sensor networks have not matched those in the terrestrial domain,” said Kastner, a professor in the Department of Computer Science and Engineering (CSE) at the Jacobs School.

Sensor Nets and Diving Vets

If scientists had underwater sensor nets, they could keep better tabs on how water conditions are changing. For example, Benson is working with researchers at an ecological research station in Tahiti that includes underwater sensors. However, the data from the sensors is only available every six months, when a diver manually goes down to the sensor and downloads that data.

In addition to creating sensor nets, these modems could be used to send data to autonomous crafts on the water’s surface. Researchers at UCSD’s Calit2 led by Doug Palmer, principal development engineer, are working on such a craft, Reef Bot.

Closer to home, Benson had first hand knowledge of how sensor nets could be useful for monitoring California’s rocky reefs. Outside of school, Benson serves as the Southern California volunteer coordinator for the nonprofit organization Reef Check. Benson oversees the training of veteran divers to conduct surveys of the species living in reefs from Santa Barbara to San Diego.

“Our volunteers learn how to identify fish and other organisms and learn what protocols we use. Once they are certified, the volunteers go out and help us do the surveys,” said Benson, who will oversee a survey in Palos Verdes (between Santa Monica and Huntington Beach) on June 6 and 7. Other volunteers from Reef Check will do a similar survey in La Jolla Cove on May 30.

“I have the field experience, and I see the need for the cheap sensor networks we are working on,” said Benson, who envisions a future where volunteers and autonomous robots work together to monitor the health and species richness of reefs and other underwater ecosystems.

“Energy Benefits of Reconfigurable Hardware for Use in Underwater Sensor Nets,” IEEE Reconfigurable Architectures Workshop (RAW), May 2009 by Bridget Benson, Ali Irturk, Junguk Cho and Ryan Kastner from the Department of Computer Science and Engineering at UC San Diego’s Jacobs School of Engineering.

Bridget Benson is supported by a National Science Foundation (NSF) Graduate Research Fellowship. This project is supported by NSF grant CNS-0839944.

Daniel Kane | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Information Technology:

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

nachricht Data analysis optimizes cyber-physical systems in telecommunications and building automation
18.01.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>