Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Toward cheap underwater sensor nets

28.05.2009
UC San Diego computer scientists are one step closer to building low cost networks of underwater sensors for real time underwater environmental monitoring.

At the IEEE Reconfigurable Architectures Workshop in Rome, Italy, on May 25, computer scientists from the Jacobs School of Engineering presented a paper highlighting the energy conservation benefits of using reconfigurable hardware rather than competing hardware platforms for their experimental underwater sensor nets.

While the Navy has used expensive sonar systems for underwater communications for years, scientists around the world urgently need low cost underwater sensor technologies that can capture and transmit environmental data back to land in real time, explained Bridget Benson, the UC San Diego computer science Ph.D. student leading the project.

The underwater sensors team at UC San Diego includes John Moffatt (left) a recent electrical engineering alumnus, Bridget Benson (center) a computer science Ph.D. student and Brian Faunce (right) an electrical engineering undergrad.

“We are building a low-cost, low-power modem for short-range, low data-rate underwater networking. Working underwater means you don’t have access to a wall socket for plug-in power. Our idea is to make the sensor and modem hardware as energy efficient as possible,” said Benson.

Greater energy efficiency means batteries can last longer and the sensors can sample the environment more frequently. Higher sampling rates can greatly increase the utility of the collected data and enable scientists to plan experiments when the conditions are just right.

Networks of underwater sensors could also serve as “stepping stones” that provide a way for data collected from underwater sensors to get back to land without any one sensor having to send a signal a long distance, which is costly in terms of energy consumption.

Reconfigurable hardware rises to the top

The computer scientists studied the patterns of energy consumption of underwater modems and determined that, for short distances, the hardware platform is a big power drain. With this in mind, the researchers looked at three different hardware platforms: digital signal processors, microcontrollers, and reconfigurable hardware. Their tests—described in the paper presented at the IEEE Workshop in Rome—show that the reconfigurable hardware platform provides the best low-energy implementation for the particular underwater communications algorithm they implemented.

“The amplifier works, but it is not yet as efficient as Don Kimball’s original design or the early simulations,” said electrical engineering undergraduate Brian Faunce, referring to Calit2 principal development engineer Don Kimball. “There is some sort of an optimization issue we still have to figure out.” “The impedance of the underwater transducer is much more complex than we originally thought” says Kimball.

“In class, you learn a lot of theory, but you don’t learn how to revise a schematic, layout the printed circuit board, assemble the circuit and then perform field tests. I have friends at other schools, and when it comes to internships and projects, they are just not available at other schools the way they are here,” said Faunce.

“Sensor networks are revolutionizing the way we understand our natural world. Unfortunately, the advances in the underwater sensor networks have not matched those in the terrestrial domain,” said Kastner, a professor in the Department of Computer Science and Engineering (CSE) at the Jacobs School.

Sensor Nets and Diving Vets

If scientists had underwater sensor nets, they could keep better tabs on how water conditions are changing. For example, Benson is working with researchers at an ecological research station in Tahiti that includes underwater sensors. However, the data from the sensors is only available every six months, when a diver manually goes down to the sensor and downloads that data.

In addition to creating sensor nets, these modems could be used to send data to autonomous crafts on the water’s surface. Researchers at UCSD’s Calit2 led by Doug Palmer, principal development engineer, are working on such a craft, Reef Bot.

Closer to home, Benson had first hand knowledge of how sensor nets could be useful for monitoring California’s rocky reefs. Outside of school, Benson serves as the Southern California volunteer coordinator for the nonprofit organization Reef Check. Benson oversees the training of veteran divers to conduct surveys of the species living in reefs from Santa Barbara to San Diego.

“Our volunteers learn how to identify fish and other organisms and learn what protocols we use. Once they are certified, the volunteers go out and help us do the surveys,” said Benson, who will oversee a survey in Palos Verdes (between Santa Monica and Huntington Beach) on June 6 and 7. Other volunteers from Reef Check will do a similar survey in La Jolla Cove on May 30.

“I have the field experience, and I see the need for the cheap sensor networks we are working on,” said Benson, who envisions a future where volunteers and autonomous robots work together to monitor the health and species richness of reefs and other underwater ecosystems.

“Energy Benefits of Reconfigurable Hardware for Use in Underwater Sensor Nets,” IEEE Reconfigurable Architectures Workshop (RAW), May 2009 by Bridget Benson, Ali Irturk, Junguk Cho and Ryan Kastner from the Department of Computer Science and Engineering at UC San Diego’s Jacobs School of Engineering.

Bridget Benson is supported by a National Science Foundation (NSF) Graduate Research Fellowship. This project is supported by NSF grant CNS-0839944.

Daniel Kane | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Information Technology:

nachricht Equipping form with function
23.06.2017 | Institute of Science and Technology Austria

nachricht Can we see monkeys from space? Emerging technologies to map biodiversity
23.06.2017 | Forschungsverbund Berlin e.V.

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>