Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Cell Phone Technology Allows Deaf People To Communicate – Via American Sign Language – Anytime, Anywhere

07.12.2009
For those who are deaf or hard of hearing, cell phone use has largely been limited to text messaging. But technology is catching up: Cornell researchers and colleagues have created cell phones that allow deaf people to communicate in sign language – the same way hearing people use phones to talk.
“We completely take cell phones for granted,” said Sheila Hemami, Cornell professor of electrical and computer engineering, who leads the research with Eve Riskin and Richard Ladner of the University of Washington. “Deaf people can text, but if texting were so fabulous, cell phones would never develop.

There is a reason that we like to use our cell phones. People prefer to talk.”

The technology, Hemami continued, is about much more than convenience. It allows deaf people “untethered communication in their native language” – exactly the same connectivity available to hearing people, she said.

Since the project, Mobile ASL (American Sign Language), started four years ago, the researchers have published several academic papers on their technology and given talks around the world. The first phone prototypes were created last year and are now in the hands of about 25 deaf people in the Seattle area.

Standard videoconferencing is used widely in academia and industry, for example, in distance-learning courses. But the Mobile ASL team designed their video compression software specifically with ASL users in mind, with the goal of sending clear, understandable video over existing limited bandwidth networks. They also faced such constraints as phones’ battery life and their ability to process real-time video at enough frames per second. They solved the battery life problem by writing software smart enough to vary the frames per second based on whether the user is signing or watching the other person sign.

Because ASL requires efficient motion capture, the researchers had to make video compression software that could deliver video at about 10 frames per second. They also had to work within the standard wireless 2G network, which only allows transmission of video at about 15-20 kilobits per second.

This is a relatively small amount of information when compared with a YouTube video, which travels at about 600 kilobits per second. For further comparison, high-definition digital television images come in at 6-10 megabits per second.

Researching how ASL developed gave the team clues on how people use it, said Frank Ciaramello, a graduate student working on the project. They learned that deaf people often use only one hand to sign, depending on the situation, and that they’re very good at adapting as needed.

And they found that when two people are talking to each other, they spend almost the entire time focused on the other person’s face.

“The facial expressions are really important in ASL, because they add a lot of information,” Ciaramello said. They concluded that their cell phone video would have to be clearest in the face and hands, while they could spare some detail in the torso and in the background. Studies with deaf people who rated different videos on an intelligibility scale helped the researchers hone in on the best areas to focus in their video.

The researchers are now perfecting their intelligibility metrics while also looking for ways to bring down the cost of integrating the software into the phones. Making the phones as user friendly as possible is a key goal of the project, Hemami said.

“We don’t want people to use the technology and say, ‘This is annoying,’” Hemami said. “We want it to be really technology transparent. We want them to call their mother and have a nice conversation.”

This research is funded by the National Science Foundation.

Blaine Friedlander | Newswise Science News
Further information:
http://www.cornell.edu
http://www.youtube.com/watch?v=FaE1PvJwI8E

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>