Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Cell Phone Technology Allows Deaf People To Communicate – Via American Sign Language – Anytime, Anywhere

07.12.2009
For those who are deaf or hard of hearing, cell phone use has largely been limited to text messaging. But technology is catching up: Cornell researchers and colleagues have created cell phones that allow deaf people to communicate in sign language – the same way hearing people use phones to talk.
“We completely take cell phones for granted,” said Sheila Hemami, Cornell professor of electrical and computer engineering, who leads the research with Eve Riskin and Richard Ladner of the University of Washington. “Deaf people can text, but if texting were so fabulous, cell phones would never develop.

There is a reason that we like to use our cell phones. People prefer to talk.”

The technology, Hemami continued, is about much more than convenience. It allows deaf people “untethered communication in their native language” – exactly the same connectivity available to hearing people, she said.

Since the project, Mobile ASL (American Sign Language), started four years ago, the researchers have published several academic papers on their technology and given talks around the world. The first phone prototypes were created last year and are now in the hands of about 25 deaf people in the Seattle area.

Standard videoconferencing is used widely in academia and industry, for example, in distance-learning courses. But the Mobile ASL team designed their video compression software specifically with ASL users in mind, with the goal of sending clear, understandable video over existing limited bandwidth networks. They also faced such constraints as phones’ battery life and their ability to process real-time video at enough frames per second. They solved the battery life problem by writing software smart enough to vary the frames per second based on whether the user is signing or watching the other person sign.

Because ASL requires efficient motion capture, the researchers had to make video compression software that could deliver video at about 10 frames per second. They also had to work within the standard wireless 2G network, which only allows transmission of video at about 15-20 kilobits per second.

This is a relatively small amount of information when compared with a YouTube video, which travels at about 600 kilobits per second. For further comparison, high-definition digital television images come in at 6-10 megabits per second.

Researching how ASL developed gave the team clues on how people use it, said Frank Ciaramello, a graduate student working on the project. They learned that deaf people often use only one hand to sign, depending on the situation, and that they’re very good at adapting as needed.

And they found that when two people are talking to each other, they spend almost the entire time focused on the other person’s face.

“The facial expressions are really important in ASL, because they add a lot of information,” Ciaramello said. They concluded that their cell phone video would have to be clearest in the face and hands, while they could spare some detail in the torso and in the background. Studies with deaf people who rated different videos on an intelligibility scale helped the researchers hone in on the best areas to focus in their video.

The researchers are now perfecting their intelligibility metrics while also looking for ways to bring down the cost of integrating the software into the phones. Making the phones as user friendly as possible is a key goal of the project, Hemami said.

“We don’t want people to use the technology and say, ‘This is annoying,’” Hemami said. “We want it to be really technology transparent. We want them to call their mother and have a nice conversation.”

This research is funded by the National Science Foundation.

Blaine Friedlander | Newswise Science News
Further information:
http://www.cornell.edu
http://www.youtube.com/watch?v=FaE1PvJwI8E

More articles from Information Technology:

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

nachricht Data analysis optimizes cyber-physical systems in telecommunications and building automation
18.01.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>