Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Cell Phone Technology Allows Deaf People To Communicate – Via American Sign Language – Anytime, Anywhere

07.12.2009
For those who are deaf or hard of hearing, cell phone use has largely been limited to text messaging. But technology is catching up: Cornell researchers and colleagues have created cell phones that allow deaf people to communicate in sign language – the same way hearing people use phones to talk.
“We completely take cell phones for granted,” said Sheila Hemami, Cornell professor of electrical and computer engineering, who leads the research with Eve Riskin and Richard Ladner of the University of Washington. “Deaf people can text, but if texting were so fabulous, cell phones would never develop.

There is a reason that we like to use our cell phones. People prefer to talk.”

The technology, Hemami continued, is about much more than convenience. It allows deaf people “untethered communication in their native language” – exactly the same connectivity available to hearing people, she said.

Since the project, Mobile ASL (American Sign Language), started four years ago, the researchers have published several academic papers on their technology and given talks around the world. The first phone prototypes were created last year and are now in the hands of about 25 deaf people in the Seattle area.

Standard videoconferencing is used widely in academia and industry, for example, in distance-learning courses. But the Mobile ASL team designed their video compression software specifically with ASL users in mind, with the goal of sending clear, understandable video over existing limited bandwidth networks. They also faced such constraints as phones’ battery life and their ability to process real-time video at enough frames per second. They solved the battery life problem by writing software smart enough to vary the frames per second based on whether the user is signing or watching the other person sign.

Because ASL requires efficient motion capture, the researchers had to make video compression software that could deliver video at about 10 frames per second. They also had to work within the standard wireless 2G network, which only allows transmission of video at about 15-20 kilobits per second.

This is a relatively small amount of information when compared with a YouTube video, which travels at about 600 kilobits per second. For further comparison, high-definition digital television images come in at 6-10 megabits per second.

Researching how ASL developed gave the team clues on how people use it, said Frank Ciaramello, a graduate student working on the project. They learned that deaf people often use only one hand to sign, depending on the situation, and that they’re very good at adapting as needed.

And they found that when two people are talking to each other, they spend almost the entire time focused on the other person’s face.

“The facial expressions are really important in ASL, because they add a lot of information,” Ciaramello said. They concluded that their cell phone video would have to be clearest in the face and hands, while they could spare some detail in the torso and in the background. Studies with deaf people who rated different videos on an intelligibility scale helped the researchers hone in on the best areas to focus in their video.

The researchers are now perfecting their intelligibility metrics while also looking for ways to bring down the cost of integrating the software into the phones. Making the phones as user friendly as possible is a key goal of the project, Hemami said.

“We don’t want people to use the technology and say, ‘This is annoying,’” Hemami said. “We want it to be really technology transparent. We want them to call their mother and have a nice conversation.”

This research is funded by the National Science Foundation.

Blaine Friedlander | Newswise Science News
Further information:
http://www.cornell.edu
http://www.youtube.com/watch?v=FaE1PvJwI8E

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>