Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Catching quakes with laptops

29.10.2008
Inside your laptop is a small accelerometer chip, there to protect the delicate moving parts of your hard disk from sudden jolts.

It turns out that the same chip is a pretty good earthquake sensor, too—especially if the signals from lots of them are compared, in order to filter out more mundane sources of laptop vibrations, such as typing.

It’s an approach that is starting to gain acceptance. The project Quake Catcher Network (QCN), already has about 1500 laptops connected in a network that has detected several tremors, including a magnitude 5.4 quake in Los Angeles in July. Led by Elizabeth Cochran at the University of California, Riverside, and Jesse Lawrence at Stanford University, QCN uses the same BOINC platform for volunteer computing that projects like SETI@home rely on.

One of the benefits of this new technology is price: Research-grade earthquake sensors typically cost between $10,000 and $100,000. Of course, they are much more sensitive, and can detect the subtle signals of far-away quakes that laptops will never pick up. But Lawrence notes that, “with many more cheap sensors, instead of guessing where strong motions were felt by interpolating between sensors, we should be able to know where strong motions were felt immediately, because we have sensors there.”

Another advantage is that QCN sensors can record the maximum ground shaking. Many high-sensitivity sensors cut short the full extent of the oscillations they are measuring even for moderate earthquakes. Lawrence argues that with enough sensors, eventually “we should have the ability to triangulate earthquakes for earthquake early warning, providing several seconds of warning before the earthquake hits neighboring populated regions.”

There is a catch with the QCN sensors, though: getting accurate coordinates for their position. At present, since most laptops do not have GPS, the project relies on coordinates that the users type in. Fortunately, rough coordinates can also be automatically retrieved from network routers that the laptop is connected to, as a backup.

It all started with teenage mutant ninjas
Laptop accelerometers were never meant to be used this way. But in 2005, a benign hacker group called the teenage mutant ninjas figured out how to access the “sudden motion sensor” in Apple computers. A year later, David Griscom at the company Suitable Systems wrote SeisMac as an educational tool for IRIS, a group of U.S. earthquake seismologists.

Cochran had the idea that this approach could be linked with BOINC. Carl Christensen, a distributed computing expert, was recruited to implement QCN in BOINC last year. A first limited release was made in March of this year, and by April the network had already detected its first quake, in Reno, Nevada.

Christensen is now working on integrating stand-alone sensors that attach to desktop machines with USB connections (since desktops don’t get bumped around like laptops, they don’t have built-in sensors). These USB sensors can be as cheap as $30, and the idea is to have large numbers of them sponsored as educational tools for schools.

Lawrence notes that “the USB accelerometers will provide a stable backbone, without which the ever-changing configuration of laptops would not be quite as reliable. The USB accelerometers can also mount directly to the floor, which means they will have better sensitivity to ground motions.”

So this is not just a neat outreach opportunity—it could one day save lives.

Anne Heavey | EurekAlert!
Further information:
http://www.isgtw.org

More articles from Information Technology:

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

nachricht New standard helps optical trackers follow moving objects precisely
23.11.2016 | National Institute of Standards and Technology (NIST)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

Shape matters when light meets atom

05.12.2016 | Physics and Astronomy

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>