Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Catching quakes with laptops

29.10.2008
Inside your laptop is a small accelerometer chip, there to protect the delicate moving parts of your hard disk from sudden jolts.

It turns out that the same chip is a pretty good earthquake sensor, too—especially if the signals from lots of them are compared, in order to filter out more mundane sources of laptop vibrations, such as typing.

It’s an approach that is starting to gain acceptance. The project Quake Catcher Network (QCN), already has about 1500 laptops connected in a network that has detected several tremors, including a magnitude 5.4 quake in Los Angeles in July. Led by Elizabeth Cochran at the University of California, Riverside, and Jesse Lawrence at Stanford University, QCN uses the same BOINC platform for volunteer computing that projects like SETI@home rely on.

One of the benefits of this new technology is price: Research-grade earthquake sensors typically cost between $10,000 and $100,000. Of course, they are much more sensitive, and can detect the subtle signals of far-away quakes that laptops will never pick up. But Lawrence notes that, “with many more cheap sensors, instead of guessing where strong motions were felt by interpolating between sensors, we should be able to know where strong motions were felt immediately, because we have sensors there.”

Another advantage is that QCN sensors can record the maximum ground shaking. Many high-sensitivity sensors cut short the full extent of the oscillations they are measuring even for moderate earthquakes. Lawrence argues that with enough sensors, eventually “we should have the ability to triangulate earthquakes for earthquake early warning, providing several seconds of warning before the earthquake hits neighboring populated regions.”

There is a catch with the QCN sensors, though: getting accurate coordinates for their position. At present, since most laptops do not have GPS, the project relies on coordinates that the users type in. Fortunately, rough coordinates can also be automatically retrieved from network routers that the laptop is connected to, as a backup.

It all started with teenage mutant ninjas
Laptop accelerometers were never meant to be used this way. But in 2005, a benign hacker group called the teenage mutant ninjas figured out how to access the “sudden motion sensor” in Apple computers. A year later, David Griscom at the company Suitable Systems wrote SeisMac as an educational tool for IRIS, a group of U.S. earthquake seismologists.

Cochran had the idea that this approach could be linked with BOINC. Carl Christensen, a distributed computing expert, was recruited to implement QCN in BOINC last year. A first limited release was made in March of this year, and by April the network had already detected its first quake, in Reno, Nevada.

Christensen is now working on integrating stand-alone sensors that attach to desktop machines with USB connections (since desktops don’t get bumped around like laptops, they don’t have built-in sensors). These USB sensors can be as cheap as $30, and the idea is to have large numbers of them sponsored as educational tools for schools.

Lawrence notes that “the USB accelerometers will provide a stable backbone, without which the ever-changing configuration of laptops would not be quite as reliable. The USB accelerometers can also mount directly to the floor, which means they will have better sensitivity to ground motions.”

So this is not just a neat outreach opportunity—it could one day save lives.

Anne Heavey | EurekAlert!
Further information:
http://www.isgtw.org

More articles from Information Technology:

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

nachricht Data analysis optimizes cyber-physical systems in telecommunications and building automation
18.01.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

Bodyguards in the gut have a chemical weapon

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>