Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Catalysis: Blueprint for a break-up

05.07.2012
Computer simulations reveal how rhodium catalysts with ‘stepped’ surface structures break ethanol molecules into hydrogen atoms and why they are so efficient
Hydrogen gas (H2) is an ideal energy carrier for fuel cells, but finding sustainable ways to produce large quantities of hydrogen continues to be a technological challenge. Jia Zhang at the A*STAR Institute of High Performance Computing and co-workers have now used sophisticated calculations to uncover a critical chemical mechanism that may make catalytic transformation of safe, renewable liquid ethanol into hydrogen fuel easier than ever before.

Currently, steam reforming is the popular method for producing hydrogen gas from ethanol. In this technique, ethanol is injected into a hot, steam-filled chamber containing a catalyst such as rhodium. The catalyst promotes the dissociation of ethanol molecules into smaller molecules, such as carbon monoxide and H2. Although chemists have had good success in using steam reforming to ‘crack’ ethanol, they have had difficulties in improving the efficiency of the catalyst because of the many diverse and complex chemical reactions at play in the system.

According to Zhang, catalysts need to selectively crack the carbon–carbon bonds of surface-adsorbed ethanol to be viable for steam reforming. Recent experimental efforts have shown that ‘stepped’ catalyst surfaces — tiny staircase-like defects present in a normally flat rhodium surface — are unusually active at both carbon-hydrogen and carbon–carbon bond cleaving. One problem, however, is that the actual mechanism of ethanol decomposition on stepped surfaces is still unclear.

The research team overcame this challenge by using high-powered computer simulations to work out which ethanol decomposition pathways are most probable on a particular stepped rhodium surface known as rhodium (211). Exhaustive calculations using density functional theory (DFT) methods revealed that there were two ways of breaking ethanol down into H2, and both shared a common intermediate species with the chemical formula CH3COH.

Crucially, the team found that this CH3COH intermediate exists only on stepped rhodium surfaces. While flat catalyst surfaces fracture ethanol through an oxametallacycle intermediate, the step-type defects preferentially absorb the alcohol and then activate the decomposition cycle by sequentially removing hydrogen atoms from the intermediate. The researchers note that the surface-sensitivity of ethanol steam reforming is an important finding because step-defects are extremely common on state-of-the-art nanoscale rhodium catalysts.

“Steam reforming is a very complicated chemical process, and our current DFT study on ethanol decomposition mechanism is just the tip of the iceberg — many factors such as temperature, concentration, substrate influence, and water effects can influence the results,” says Zhang. “However, this work is an important first step for establishing theoretical rules to guide development of new, high-performance catalyst materials.”

The A*STAR-affiliated researchers contributing to this research are from the Institute of High Performance Computing

References:

Zhang, J. et al. Density functional theory studies of ethanol decomposition on Rh(211). Journal of Physical Chemistry C 115, 22429–22437 (2011)

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg
http://www.researchsea.com

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>