Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Carnegie Mellon researchers save electricity with low-power processors and flash memory

Researchers at Carnegie Mellon University and Intel Labs Pittsburgh (ILP) have combined low-power, embedded processors typically used in netbooks with flash memory to create a server architecture that is fast, but far more energy efficient for data-intensive applications than the systems now used by major Internet services.

An experimental computing cluster based on this so-called Fast Array of Wimpy Nodes (FAWN) architecture was able to handle 10 to 100 times as many queries for the same amount of energy as a conventional, disk-based cluster. The FAWN cluster had 21 nodes, each with a low-cost, low-power off-the-shelf processor and a four-gigabyte compact flash card. At peak utilization, the cluster operates on less energy than a 100-watt light bulb.

The research team, led by David Andersen, Carnegie Mellon assistant professor of computer science, and Michael Kaminsky, senior research scientist at ILP, received a best paper award for its report on FAWN at the Association for Computing Machinery's annual Symposium on Operating Systems Principles Oct. 12 in Big Sky, Mont.

A next-generation FAWN cluster is being built with nodes that include Intel's Atom processor, which is used in netbooks and other mobile or low-power applications.

Developing energy-efficient server architectures has become a priority for datacenters, where the cost of electricity now equals or surpasses the cost of the computing machines themselves over their typical service life. Datacenters being built today require their own electrical substations and future datacenters may require as much as 200 megawatts of power.

"FAWN systems can't replace all of the servers in a datacenter, but they work really well for key-value storage systems, which need to access relatively small bits of information quickly," Andersen said. Key-value storage systems are growing in both size and importance, he added, as ever larger social networks and shopping Web sites keep track of customers' shopping carts, thumbnail photos of friends and a slew of message postings.

Flash memory is significantly faster than hard disks and far cheaper than dynamic random access memory (DRAM) chips, while consuming less power than either. Though low-power processors aren't the fastest available, the FAWN architecture can use them efficiently by balancing their performance with input/output bandwidth. In conventional systems, the gap between processor speed and bandwidth has continually grown for decades, resulting in memory bottlenecks that keep fast processors from operating at full capacity even as the processors continue to draw a disproportionate amount of power.

"FAWN will probably never be a good option for challenging real-time applications such as high-end gaming," Kaminsky said. "But we've shown it is a cost-effective, energy efficient approach to designing key-value storage systems and we are now working to extend the approach to applications such as large-scale data analysis."

The work was supported in part by gifts from Network Appliance, Google and Intel Corp., and by a grant from the National Science Foundation. In addition to Andersen and Kaminsky, the research team included Ph.D. computer science students Jason Franklin, Amar Phanishayee and Vijay Vasudevan, and graduate student Lawrence Tan.

About Carnegie Mellon: Carnegie Mellon ( is a private, internationally ranked research university with programs in areas ranging from science, technology and business, to public policy, the humanities and the fine arts. More than 11,000 students in the university's seven schools and colleges benefit from a small student-to-faculty ratio and an education characterized by its focus on creating and implementing solutions for real problems, interdisciplinary collaboration and innovation. A global university, Carnegie Mellon's main campus in the United States is in Pittsburgh, Pa. It has campuses in California's Silicon Valley and Qatar, and programs in Asia, Australia and Europe. The university is in the midst of a $1 billion fundraising campaign, titled "Inspire Innovation: The Campaign for Carnegie Mellon University," which aims to build its endowment, support faculty, students and innovative research, and enhance the physical campus with equipment and facility improvements.

Byron Spice | EurekAlert!
Further information:

More articles from Information Technology:

nachricht Fraunhofer FIT joins Facebook's Telecom Infra Project
25.10.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Stanford researchers create new special-purpose computer that may someday save us billions
21.10.2016 | Stanford University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>