Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Capturing movements of actors and athletes in real time with conventional video cameras

28.08.2012
Within milliseconds, and just with the help of mathematics, computing power and conventional video cameras, computer scientists at the Max-Planck-Institute for Informatics in Saarbrücken can automatically capture the movements of several people. The new approach helps not only animation specialists in Hollywood movies but also medical scientists and athletes.

In the computer graphics (CG) animated comedy “Ted,” which is running now in the cinemas, Ted is a teddy bear who came to life as the result of a childhood wish of John Bennett (Mark Wahlberg) and has refused to leave his side ever since. CG Animated characters like “Ted” have become a standard of Hollywood’s movie productions since the blockbuster “Avatar” with its blue-skinned computer-animated characters won three Oscars and brought in three billion US dollars, digital animated characters have become a standard of Hollywood’s movie productions.

While movies like “Pirates of the Caribbean” or “Ted” still combined real actors with digital counterparts, the well-known director Steven Spielberg focused entirely on virtual actors in “The Adventures of Tintin.” He used the so-called motion capture approach, which also animated Ted. Motion capture means that an actor wears a suit with special markers attached. These reflect infrared light sent and received by a camera system installed in a studio. In this way, the system captures the movements of the actor. Specialists use this as input to transfer exactly the same movements to the virtual character.

“The real actors dislike wearing these suits, as they constrain their movements,” explains Christian Theobalt, professor of computer science at Saarland University and head of the research group “Graphics, Vision & Video” at the Max-Planck-Institute for Informatics (MPI). Theobalt points out that this has not changed since animating “Gollum” in the trilogy “Lord of the Rings.” Hence, together with his MPI-colleagues Nils Hasler, Carsten Stoll and Jürgen Gall of the Swiss Federal Institute of Technology Zurich, Theobalt developed a new approach that both works without markers and captures motions in realtime. “The part which is scientifically new is the way in which we represent and compute the filmed scene. It enables new speed in capturing and visualizing the movements with normal video cameras,” Theobalt explains.

Implemented, it looks like this: The video cameras record a researcher turning cartwheels. The computer gets the camera footage as input and computes the skeleton motion of the actor so quickly that you cannot perceive any delay between the movement and its overlay, a red skeleton. According to Theobalt, the new computing approach also works if the movements of several persons have to be captured, or if they are obscured by objects in the studio and against a noisy background.

“Therefore we are convinced that our approach even enables motion capture outdoors, for example in the Olympic stadium,” Theobalt points out. Athletes could use it to run faster, to jump higher or to throw the spear farther. Spectators in the stadium or in front of the TV could use the technology to tell the difference between first and second place. Besides entertainment, medical science could also benefit from the new approach, for example by helping doctors to check healing after operations on joints.

In the next months his MPI colleagues Nils Hasler and Carsten Stoll will found a company to transform the software prototype into a real product. “They’ve already had some meetings with representatives sent by companies in Hollywood,” Theobalt says.

Technical background

The new approach requires technology which is quite cheap. You need no special cameras, but their recording has to be synchronized. According to the MPI researcher, five cameras are enough that the approach works. But they used twelve cameras for the published results. The way they present the scene to the computer and let it compute makes the difference. Hence, they built a three-dimensional model of the actor whose motions should be captured. The result is a motion skeleton with 58 joints. They model the proportions of the body as so-called sums of three dimensional Gaussians, whose visualisation looks like a ball. The radius of the ball varies according to the dimensions of the real person. The resulting three-dimensional model resembles the mascot of a famous tire manufacturer.

The images of the video cameras are presented as two-dimensional Gaussians that cover image blobs that are consistent in color.

To capture the person’s movement, the software continuously computes the best way that the 2D and 3D Gaussians can overlay each other while fitting accurately. The Saarbrücken computer scientists are able to compute these model-to-image similarities in a very efficient way. Therefore, they can capture the filmed motion and visualize it in real-time. All they need is just a few cameras, some computing power and mathematics.

Computer Science on the Saarland University Campus

Apart from the Saarland University chair in computer science and Max Planck Institute for Informatics, there are several other research institutes exploring new information technologies and their impact on society. The German Research Center for Artificial Intelligence (DFKI), the Max Planck Institute for Software Systems, the Center for Bioinformatics, the Intel Visual Computing Institute, Center for IT-Security, Privacy and Accountability, and the Cluster of Excellence on “Multimodal Computing and Interaction” can also be found there.

More Information:
Carsten Stoll, Nils Hasler, Juergen Gall, Hans-Peter Seidel, Christian Theobalt,
Fast Articulated Motion Tracking using a Sums of Gaussians Body Model
http://www.mpi-inf.mpg.de/~theobalt/sog.pdf

Video online
http://www.mpi-inf.mpg.de/~theobalt/sog.mp4

For further questions please contact:
Prof. Dr. Christian Theobalt
Campus E 1.4
66123 Saarbrücken
E-Mail: theobalt@mpii.de
Tel.: +49 681 9325-428

Gordon Bolduan
Science Communication
Cluster of Excellence “Multimodal Computing and Interaction”
E-Mail: bolduan@mmci.uni-saarland.de
Tel.: +49 681 302-70741

| Universität des Saarlandes
Further information:
http://www.mpi-inf.mpg.de/~theobalt/sog.pdf
http://www.mpi-inf.mpg.de/~theobalt/sog.mp4

More articles from Information Technology:

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

Hope to discover sure signs of life on Mars? New research says look for the element vanadium

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>