Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can we see monkeys from space? Emerging technologies to map biodiversity

23.06.2017

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously possible. “There are ten times as many satellites in operation now as there were in the 1970s. Most people use maps from earth observation satellites on their mobile devices.


Satellite data to map endangered monkey populations on Earth

University of Leicester / Dr Beth Cole

The European Copernicus satellites now provide free global data every 5 days down to a resolution of 10 m. And think of small cube satellites that fit into a tote bag and weigh only 2 kg. Satellite technology has undergone a massive change and has never been so accessible,” explains Heiko Balzter from the National Centre for Earth Observation at the University of Leicester.

“However, satellites cannot observe most animals directly. Even today we cannot see monkeys from space. So most biodiversity is invisible to a satellite,” adds Douglas W. Yu from the School of Biological Sciences, University of East Anglia, who co-led the research.

Therefore, scientists had to rely on indicators, such as land cover type or distance to roads or settlements, to infer the diversity of species and landscapes (biodiversity) for a particular area or region. Modern ecological models that can combine the information from satellite data and on species occurrence from ground surveys are now offering near real-time monitoring of the impacts of land management changes on biodiversity.

“In our paper we propose to use an innovative mix of new technologies rather than a single remedy,” explains Yu.

Among these new technologies which can be used to map animal occurrence and distribution are automated recording devices that either record animal sounds in a landscape, or take vital photographs of animals passing automatically triggered camera-traps. Modern genetic “fingerprinting” on a massive scale, called ‘high-throughput DNA sequencing’, can also tell which species live in a landscape, when applied to the genetic material that species leave behind in the environment in the form of saliva, urine, faeces, hair, feathers or blood.

In addition, mass-collected bulk samples of small invertebrate organisms can be collected in the field with relative ease. For example, mosquitoes can be caught in a trap and blended into a ‘biodiversity soup’ to analyse the genetic material (DNA) in the blood of the animals they have been feeding on. Yu says, “DNA-based methods are a powerful way to circumvent the taxonomic bottleneck in biodiversity assessment, but they are only partially able to relieve the sampling bottleneck. In the end, the only way to cover whole landscapes is to combine satellites, sequencers, and statistics.”

Together, the data on animal sounds and photos, the DNA they leave behind, and satellite observations provide a wealth of biodiversity information.

Balzter comments, “It may sound like a strange idea - satellites that can see the genetic make-up of the blood sucked by mosquitoes. Of course they cannot directly see that. But big data from genetic fingerprinting of animal DNA in a landscape combined with fine-resolution satellite data and sophisticated ecological models can. We need to work across subjects to make this happen. These are very exciting times. If our research can help to save a species that gives me a very strong sense of purpose to my job as a university professor.”

But the proposed approach in this study is not just future tech. “Earlier this year we have published the first example from three forest reserves in Sabah, Malaysian Borneo,” comments Andreas Wilting from the German Leibniz Institute for Zoo and Wildlife Research.

“We used camera-trap data, in combination with high-resolution satellite data and modern community occupancy models to map biodiversity and show that mammalian biodiversity benefits from sustainable forest management in forests certified by the Forest Stewardship Council (FSC).” This example highlights how modern technologies can assist land managers to reduce their impact on biodiversity.

Many animal species are threatened with extinction. As a result of this, many countries have signed up to the United Nations Convention on Biological Diversity to try and stop this loss of species.

In 2010, the Convention met in Aichi, Japan, and agreed a set of targets, called the “Aichi Biodiversity Targets”. These targets aim to address the underlying causes of biodiversity, reduce the pressures on biodiversity, safeguard ecosystems and species, enhance the benefits from biodiversity and ecosystem services, and enable participatory planning, knowledge management and capacity building.

Lead author Alex Bush of the Kunming Institute of Zoology, China, and the Canadian Rivers Institute summarised, “For years, management decisions have typically relied on surrogates with unknown consequences for biodiversity conservation. With the parallel developments in remote sensing, genomics and more automated field recording, we now have the tools needed to collect data at a large scale.

Methods to model these 'big data' sources are already available and could improve how we conserve and manage ecosystems, and the essential services they provide, in a period of intense global change.”

Publications
The paper, titled ‘Connecting earth observation to high-throughput biodiversity data’ is published in the journal Nature Ecology and Evolution: DOI: 10.1038/s41559-017-0176.

Case study from Sabah, Malaysian Borneo, titled ‘Quantifying mammalian biodiversity co-benefits in certified tropical forests’ has been published in the journal Diversity and Distributions: DOI: 10.1111/ddi.12530.

Please find attached an image - satellite data to map endangered monkey populations on Earth.
Image credit: University of Leicester / Dr Beth Cole
Image caption: An example of the use of Earth Observation for monitoring ecosystem services. A false colour composite of predicted abundance of Graminoids (Red) Shrubs (Green) and Bryophytes (Blue) representing vegetation composition on a peatland from Partial Least Squares Regression models on a hyperspectral image.

Contact

University of Leicester
Professor Heiko Balzter
hb91@le.ac.uk

UEA Communications Officer
Lucy Clegg
01603 592764
lucy.clegg@uea.ac.uk.

Leibniz Institute for Zoo and Wildlife Research (IZW)
Alfred-Kowalke-Str. 17
13125 Berlin
Germany

Dr Andreas Wilting
wilting@izw-berlin.de
+49 30 5168 333

Anja Wirsing | Forschungsverbund Berlin e.V.

More articles from Information Technology:

nachricht NASA CubeSat to test miniaturized weather satellite technology
10.11.2017 | NASA/Goddard Space Flight Center

nachricht New approach uses light instead of robots to assemble electronic components
08.11.2017 | The Optical Society

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>