Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can we see monkeys from space? Emerging technologies to map biodiversity

23.06.2017

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously possible. “There are ten times as many satellites in operation now as there were in the 1970s. Most people use maps from earth observation satellites on their mobile devices.


Satellite data to map endangered monkey populations on Earth

University of Leicester / Dr Beth Cole

The European Copernicus satellites now provide free global data every 5 days down to a resolution of 10 m. And think of small cube satellites that fit into a tote bag and weigh only 2 kg. Satellite technology has undergone a massive change and has never been so accessible,” explains Heiko Balzter from the National Centre for Earth Observation at the University of Leicester.

“However, satellites cannot observe most animals directly. Even today we cannot see monkeys from space. So most biodiversity is invisible to a satellite,” adds Douglas W. Yu from the School of Biological Sciences, University of East Anglia, who co-led the research.

Therefore, scientists had to rely on indicators, such as land cover type or distance to roads or settlements, to infer the diversity of species and landscapes (biodiversity) for a particular area or region. Modern ecological models that can combine the information from satellite data and on species occurrence from ground surveys are now offering near real-time monitoring of the impacts of land management changes on biodiversity.

“In our paper we propose to use an innovative mix of new technologies rather than a single remedy,” explains Yu.

Among these new technologies which can be used to map animal occurrence and distribution are automated recording devices that either record animal sounds in a landscape, or take vital photographs of animals passing automatically triggered camera-traps. Modern genetic “fingerprinting” on a massive scale, called ‘high-throughput DNA sequencing’, can also tell which species live in a landscape, when applied to the genetic material that species leave behind in the environment in the form of saliva, urine, faeces, hair, feathers or blood.

In addition, mass-collected bulk samples of small invertebrate organisms can be collected in the field with relative ease. For example, mosquitoes can be caught in a trap and blended into a ‘biodiversity soup’ to analyse the genetic material (DNA) in the blood of the animals they have been feeding on. Yu says, “DNA-based methods are a powerful way to circumvent the taxonomic bottleneck in biodiversity assessment, but they are only partially able to relieve the sampling bottleneck. In the end, the only way to cover whole landscapes is to combine satellites, sequencers, and statistics.”

Together, the data on animal sounds and photos, the DNA they leave behind, and satellite observations provide a wealth of biodiversity information.

Balzter comments, “It may sound like a strange idea - satellites that can see the genetic make-up of the blood sucked by mosquitoes. Of course they cannot directly see that. But big data from genetic fingerprinting of animal DNA in a landscape combined with fine-resolution satellite data and sophisticated ecological models can. We need to work across subjects to make this happen. These are very exciting times. If our research can help to save a species that gives me a very strong sense of purpose to my job as a university professor.”

But the proposed approach in this study is not just future tech. “Earlier this year we have published the first example from three forest reserves in Sabah, Malaysian Borneo,” comments Andreas Wilting from the German Leibniz Institute for Zoo and Wildlife Research.

“We used camera-trap data, in combination with high-resolution satellite data and modern community occupancy models to map biodiversity and show that mammalian biodiversity benefits from sustainable forest management in forests certified by the Forest Stewardship Council (FSC).” This example highlights how modern technologies can assist land managers to reduce their impact on biodiversity.

Many animal species are threatened with extinction. As a result of this, many countries have signed up to the United Nations Convention on Biological Diversity to try and stop this loss of species.

In 2010, the Convention met in Aichi, Japan, and agreed a set of targets, called the “Aichi Biodiversity Targets”. These targets aim to address the underlying causes of biodiversity, reduce the pressures on biodiversity, safeguard ecosystems and species, enhance the benefits from biodiversity and ecosystem services, and enable participatory planning, knowledge management and capacity building.

Lead author Alex Bush of the Kunming Institute of Zoology, China, and the Canadian Rivers Institute summarised, “For years, management decisions have typically relied on surrogates with unknown consequences for biodiversity conservation. With the parallel developments in remote sensing, genomics and more automated field recording, we now have the tools needed to collect data at a large scale.

Methods to model these 'big data' sources are already available and could improve how we conserve and manage ecosystems, and the essential services they provide, in a period of intense global change.”

Publications
The paper, titled ‘Connecting earth observation to high-throughput biodiversity data’ is published in the journal Nature Ecology and Evolution: DOI: 10.1038/s41559-017-0176.

Case study from Sabah, Malaysian Borneo, titled ‘Quantifying mammalian biodiversity co-benefits in certified tropical forests’ has been published in the journal Diversity and Distributions: DOI: 10.1111/ddi.12530.

Please find attached an image - satellite data to map endangered monkey populations on Earth.
Image credit: University of Leicester / Dr Beth Cole
Image caption: An example of the use of Earth Observation for monitoring ecosystem services. A false colour composite of predicted abundance of Graminoids (Red) Shrubs (Green) and Bryophytes (Blue) representing vegetation composition on a peatland from Partial Least Squares Regression models on a hyperspectral image.

Contact

University of Leicester
Professor Heiko Balzter
hb91@le.ac.uk

UEA Communications Officer
Lucy Clegg
01603 592764
lucy.clegg@uea.ac.uk.

Leibniz Institute for Zoo and Wildlife Research (IZW)
Alfred-Kowalke-Str. 17
13125 Berlin
Germany

Dr Andreas Wilting
wilting@izw-berlin.de
+49 30 5168 333

Anja Wirsing | Forschungsverbund Berlin e.V.

More articles from Information Technology:

nachricht Researchers achieve HD video streaming at 10,000 times lower power
20.04.2018 | University of Washington

nachricht An AI that makes road maps from aerial images
18.04.2018 | Massachusetts Institute of Technology, CSAIL

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>