Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Caltech physicists detect entanglement of one photon shared among four locations

12.05.2009
Technique relies upon uncertainty principle

Scientists at the California Institute of Technology (Caltech) have developed an efficient method to detect entanglement shared among multiple parts of an optical system.

They show how entanglement, in the form of beams of light simultaneously propagating along four distinct paths, can be detected with a surprisingly small number of measurements. Entanglement is an essential resource in quantum information science, which is the study of advanced computation and communication based on the laws of quantum mechanics.

In the May 8 issue of the journal Science, H. Jeff Kimble, the William L. Valentine Professor and professor of physics at Caltech, and his colleagues demonstrate for the first time that quantum uncertainty relations can be used to identify entangled states of light that are only available in the realm of quantum mechanics. Their approach builds on the famous Heisenberg uncertainty principle, which places a limit on the precision with which the momentum and position of a particle can be known simultaneously.

Entanglement, which lies at the heart of quantum physics, is a state in which the parts of a composite system are more strongly correlated than is possible for any classical counterparts, regardless of the distances separating them.

Entanglement in a system with more than two parts, or multipartite entanglement, is a critical tool for diverse applications in quantum information science, such as for quantum metrology, computation, and communication. In the future, a "quantum internet" will rely on entanglement for the teleportation of quantum states from place to place (for a recent review see H. J. Kimble, Nature 453, 1023 (2008)).

"For some time physicists have studied the entanglement of two parts—or bipartite entanglement—and techniques for classifying and detecting the entanglement between two parts of a composite system are well known," says Scott Papp, a postdoctoral scholar and one of the authors of the paper. "But that hasn't been the case for multipartite states. Since they contain more than two parts, their classification is much richer, but detecting their entanglement is extremely challenging."

In the Caltech experiment, a pulse of light was generated containing a single photon—a massless bundle, with both wave-like and particle-like properties, that is the basic unit of electromagnetic radiation. The team split the single photon to generate an entangled state of light in which the quantum amplitudes for the photon propagate among four distinct paths, all at once. This so-called W state plays an important role in quantum information science.

To enable future applications of multipartite W states, the entanglement contained in them must be detected and characterized. This task is complicated by the fact that entanglement in W states can be found not only among all the parts, but also among a subset of them.

To distinguish between these two cases in real-world experiments, coauthors Steven van Enk and Pavel Luogovski from the University of Oregon developed a novel approach to entanglement detection based on the uncertainty principle. (See also the recent theoretical article by van Enk, Lougovski, and the Caltech group, "Verifying multi-partite mode entanglement of W states" at http://xxx.lanl.gov/abs/0903.0851.)

The demonstration of the detection of entanglement in multipartite W states is the key breakthrough of the Caltech group's work.

The new approach to entanglement detection makes use of non-local measurements of a photon propagating through all four paths. The measurements indicate whether a photon is present, but give no information about which path it takes.

"The quantum uncertainty associated with these measurements has allowed us to estimate the level of correlations among the four paths through which a single photon simultaneously propagates, by comparing to the minimum uncertainty possible for any less entangled states," says Kyung Soo Choi, a Caltech graduate student and one of the authors of the paper.

Correlations of the paths above a certain level signify entanglement among all the pathways; even partially entangled W states do not attain a similar level of correlation. A key feature of this approach is that only a relatively small number of measurements must be performed.

Due to their fundamental structure, the entanglement of W states persists even in the presence of some sources of noise. This is an important feature for real-world applications of W states in noisy environments. The Caltech experiments have directly tested this property by disturbing the underlying correlations of the entangled state. When the correlations are purposely weakened, there is a reduction in the number of paths of the optical system that are entangled. And yet, as predicted by the structure of W states, the entanglement remains amongst a subset of the paths.

"Our work introduces a new protocol for detecting an important class of entanglement with single photons," Papp explains. "It signifies the ever-increasing degree of control we have in the laboratory to study and manipulate quantum states of light and matter."

Next, the researchers plan to apply their technique to entangled states of atoms. These efforts will build upon previous advances in the Caltech Quantum Optics Group, including the mapping of photonic entanglement to and from a quantum memory (http://media.caltech.edu/press_releases/13115), and the distribution of entanglement amongst the nodes of a quantum network (http://media.caltech.edu/press_releases/12969).

The paper, "Characterization of Multipartite Entanglement for One Photon Shared Among Four Optical Modes," appears in the May 8 issue of Science. The authors are Scott B. Papp, Kyung Soo Choi (whose contributions to the work were equal to Papp's), and H. Jeff Kimble of Caltech; Hui Deng, a former Caltech postdoctoral scholar, now at the University of Michigan, Ann Arbor; and Pavel Lougovski and S. J. van Enk of the University of Oregon. Van Enk is also an associate of the Institute for Quantum Information at Caltech.

The work was funded by the Intelligence Advanced Research Projects Activity, the National Science Foundation, and Northrop Grumman Space Technology.

Contact: Scott Papp
papp@caltech.edu
Kathy Svitil
ksvitil@caltech.edu

Kathy Svitil | EurekAlert!
Further information:
http://www.caltech.edu
http://pr.caltech.edu/media

More articles from Information Technology:

nachricht Snake-inspired robot uses kirigami to move
22.02.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Camera technology in vehicles: Low-latency image data compression
22.02.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>