Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Caltech physicists detect entanglement of one photon shared among four locations

Technique relies upon uncertainty principle

Scientists at the California Institute of Technology (Caltech) have developed an efficient method to detect entanglement shared among multiple parts of an optical system.

They show how entanglement, in the form of beams of light simultaneously propagating along four distinct paths, can be detected with a surprisingly small number of measurements. Entanglement is an essential resource in quantum information science, which is the study of advanced computation and communication based on the laws of quantum mechanics.

In the May 8 issue of the journal Science, H. Jeff Kimble, the William L. Valentine Professor and professor of physics at Caltech, and his colleagues demonstrate for the first time that quantum uncertainty relations can be used to identify entangled states of light that are only available in the realm of quantum mechanics. Their approach builds on the famous Heisenberg uncertainty principle, which places a limit on the precision with which the momentum and position of a particle can be known simultaneously.

Entanglement, which lies at the heart of quantum physics, is a state in which the parts of a composite system are more strongly correlated than is possible for any classical counterparts, regardless of the distances separating them.

Entanglement in a system with more than two parts, or multipartite entanglement, is a critical tool for diverse applications in quantum information science, such as for quantum metrology, computation, and communication. In the future, a "quantum internet" will rely on entanglement for the teleportation of quantum states from place to place (for a recent review see H. J. Kimble, Nature 453, 1023 (2008)).

"For some time physicists have studied the entanglement of two parts—or bipartite entanglement—and techniques for classifying and detecting the entanglement between two parts of a composite system are well known," says Scott Papp, a postdoctoral scholar and one of the authors of the paper. "But that hasn't been the case for multipartite states. Since they contain more than two parts, their classification is much richer, but detecting their entanglement is extremely challenging."

In the Caltech experiment, a pulse of light was generated containing a single photon—a massless bundle, with both wave-like and particle-like properties, that is the basic unit of electromagnetic radiation. The team split the single photon to generate an entangled state of light in which the quantum amplitudes for the photon propagate among four distinct paths, all at once. This so-called W state plays an important role in quantum information science.

To enable future applications of multipartite W states, the entanglement contained in them must be detected and characterized. This task is complicated by the fact that entanglement in W states can be found not only among all the parts, but also among a subset of them.

To distinguish between these two cases in real-world experiments, coauthors Steven van Enk and Pavel Luogovski from the University of Oregon developed a novel approach to entanglement detection based on the uncertainty principle. (See also the recent theoretical article by van Enk, Lougovski, and the Caltech group, "Verifying multi-partite mode entanglement of W states" at

The demonstration of the detection of entanglement in multipartite W states is the key breakthrough of the Caltech group's work.

The new approach to entanglement detection makes use of non-local measurements of a photon propagating through all four paths. The measurements indicate whether a photon is present, but give no information about which path it takes.

"The quantum uncertainty associated with these measurements has allowed us to estimate the level of correlations among the four paths through which a single photon simultaneously propagates, by comparing to the minimum uncertainty possible for any less entangled states," says Kyung Soo Choi, a Caltech graduate student and one of the authors of the paper.

Correlations of the paths above a certain level signify entanglement among all the pathways; even partially entangled W states do not attain a similar level of correlation. A key feature of this approach is that only a relatively small number of measurements must be performed.

Due to their fundamental structure, the entanglement of W states persists even in the presence of some sources of noise. This is an important feature for real-world applications of W states in noisy environments. The Caltech experiments have directly tested this property by disturbing the underlying correlations of the entangled state. When the correlations are purposely weakened, there is a reduction in the number of paths of the optical system that are entangled. And yet, as predicted by the structure of W states, the entanglement remains amongst a subset of the paths.

"Our work introduces a new protocol for detecting an important class of entanglement with single photons," Papp explains. "It signifies the ever-increasing degree of control we have in the laboratory to study and manipulate quantum states of light and matter."

Next, the researchers plan to apply their technique to entangled states of atoms. These efforts will build upon previous advances in the Caltech Quantum Optics Group, including the mapping of photonic entanglement to and from a quantum memory (, and the distribution of entanglement amongst the nodes of a quantum network (

The paper, "Characterization of Multipartite Entanglement for One Photon Shared Among Four Optical Modes," appears in the May 8 issue of Science. The authors are Scott B. Papp, Kyung Soo Choi (whose contributions to the work were equal to Papp's), and H. Jeff Kimble of Caltech; Hui Deng, a former Caltech postdoctoral scholar, now at the University of Michigan, Ann Arbor; and Pavel Lougovski and S. J. van Enk of the University of Oregon. Van Enk is also an associate of the Institute for Quantum Information at Caltech.

The work was funded by the Intelligence Advanced Research Projects Activity, the National Science Foundation, and Northrop Grumman Space Technology.

Contact: Scott Papp
Kathy Svitil

Kathy Svitil | EurekAlert!
Further information:

More articles from Information Technology:

nachricht Smarter robot vacuum cleaners for automated office cleaning
15.08.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Researchers 3-D print first truly microfluidic 'lab on a chipl devices
15.08.2017 | Brigham Young University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>



Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

More VideoLinks >>>