Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Building Ultra-Low Power Wireless Networks

30.08.2012
Grant will further investigation into distortion-tolerant networks

Engineering researchers at the University of Arkansas have received funding from the National Science Foundation to create distortion-tolerant communications for wireless networks that use very little power. The research will improve wireless sensors deployed in remote areas where these systems must rely on batteries or energy-harvesting devices for power.

“Ultra-low power consumption is one of the most formidable challenges faced by the next generation of wireless sensing systems,” said Jingxian Wu, assistant professor of electrical engineering. “These systems will need to operate without interruption for multiple years and with extremely limited battery capacity or limited ability to scavenge energy from other devices. This is why the NSF was interested in our research.”

Ultra-low power wireless communication devices are powered by batteries or energy harvesting devices such as solar panels. The lower the power consumption, the longer the device can operate without recharging. This is especially important for wireless sensor networks, where the sensors are often deployed in remote areas to monitor items such as water quality, the health of animals and the condition of tunnels, buildings and bridges. These networks are expected to operate without interruption over extremely long periods of time without changing batteries. Therefore, it is important to reduce the power consumption so the device can operate for long periods without human intervention.

During data transfer, distortion occurs if the received message is different from the transmitted message. In digital communication systems, the data are transmitted in the form of zeroes and ones. Due to noise and interference during the transmission process, the receiver might receive a zero when a one was transmitted or vice versa. Some critical data or software, such as computer games, requires distortion-free communication. With these systems, any distortion might make the software nonoperational. Other data, such as pictures, music and videos, can tolerate some distortion because human perception might not be sensitive to some of the features.

Conventional research on wireless communication technologies focuses on minimizing distortion through various methods and designs. Conversely, Wu and doctoral student Ning Sun work with distortion-tolerant systems. Rather than limiting or minimizing distortion, their wireless systems allow for controlled distortion, which requires less power than conventional technologies.

“If we accept the fact that distortion is inevitable in practical communication systems, why not directly design a system that is naturally tolerant to distortion?” Wu said. “Allowing distortion instead of minimizing it, our proposed distortion-tolerant communication can operate in rate levels beyond the constraints imposed by Shannon channel capacity.”

Shannon channel capacity is the maximum rate at which distortion-free information can be transmitted over a communication channel.

The goal of Wu’s research project generally is to advance the knowledge of ultra-low power wireless networks. He and his colleagues will construct and test theories, design tools to enable distortion-tolerant technologies and design and develop prototype networks. Their theories exploit the unique features of wireless monitoring systems, such as delay-tolerance, distortion-tolerance, low data rate and spatial data correlation, all of which provide more freedom in network design.

The researchers’ work will accelerate the widespread deployment of ultra-low power wireless networks used for surveillance, environmental and structure monitoring, and biomedical sensing. These applications have the ability to provide early warnings to prevent catastrophic events, such as structural failures, to improve public safety and homeland security and to promote the health and well being of the general public.

The National Science Foundation grant totals $279,425 over three years.

Wu and Sun recently published findings on distortion-tolerant wireless networks in IEEE Transactions on Wireless Communications.

CONTACTS:
Jingxian Wu, assistant professor, electrical engineering
College of Engineering
479-575-6584, wuj@uark.edu
Matt McGowan, science and research communications officer
University Relations
479-575-4246, dmcgowa@uark.edu

Matt McGowan | Newswise Science News
Further information:
http://www.uark.edu

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>