Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough technique offers prospect of silicon detectors for telecommunications

06.10.2014

A team of researchers, led by the Optoelectronics Research Centre (ORC) at the University of Southampton, has demonstrated a breakthrough technique that offers the first possibility of silicon detectors for telecommunications.

For decades, silicon has been the foundation of the microelectronics revolution and, owing to its excellent optical properties in the near- and mid-infrared range, is now promising to have a similar impact on photonics.

The team's research, reported in the journal Nature Materials, describes engineering the electronic band structure of laser-crystallised silicon photonic devices to help overcome one of the key challenges of using silicon in data communications.

The laser processing technique has been developed for their silicon optical fibre platform. It demonstrates that it is possible to completely crystallise the core material, while at the same time writing in large stresses to modify the optoelectronic properties, achieving extreme bandgap reductions from 1.11 eV down to 0.59 eV, enabling optical detection out to 2,100 nm.

Incorporating silicon materials within the fibre geometry avoids the issues associated with coupling between the micron-sized fibres used for the transport of light, and the nanoscale waveguides on-chip that are employed for data processing and communications systems.

Dr Anna Peacock, an Associate Professor in Optoelectronics who heads the group in the ORC, comments: "The ability to grow single crystal-like materials directly inside the fibre core is a truly exciting prospect as, for the first time, the optoelectronic properties of the silicon fibre devices will be able to approach those of their on-chip counterparts."

Dr Noel Healy, the lead researcher on the project, adds: "Our discovery uses large variable strains to provide unprecedented control over silicon's optoelectronic properties. This greatly increases the number of potential applications for the material in both electrical and optical applications.

"Our paper shows that we can halve the material's bandgap energy. That means silicon can now be considered as a medium for optical detection all the way through the telecommunications band."

Fellow researcher Dr Sakellaris Mailis points out that this versatile laser processing method can be easily extended to a wide range of material systems.

Full bibliographic information

Extreme electronic bandgap modification in laser-crystallized ​silicon optical fibres
Noel Healy, Sakellaris Mailis, Nadezhda M. Bulgakova, Pier J. A. Sazio, Todd D. Day, Justin R. Sparks, Hiu Y. Cheng, John V. Badding & Anna C. Peacock
Nature Materials (2014)
doi:10.1038/nmat4098
To read the paper in full visit: http://www.nature.com/nmat/journal/vaop/ncurrent/full/nmat4098.html

Notes for editors

1. The attached image shows a single-crystal-like silicon core fibre with a thermodynamic snap shot of the laser heating.

2. Nature Materials i s a respected multi-disciplinary journal that brings together cutting-edge research across the entire spectrum of materials science and engineering.

To read the paper in full visit: http://www.nature.com/nmat/journal/vaop/ncurrent/full/nmat4098.html

3. The full collaborative research team includes Professor N. Bulgakova currently at HiLASE, Institute of Physics ASCR; Professor J. Badding, Dr T. Day, Dr J. Sparks, and Ms H. Cheng of the Department of Chemistry and the Materials Research Institute at Penn State University, and Dr P. Sazio of the ORC. A significant component of the work was conducted using the Diamond Light Source with the assistance of Dr K. Ignatyev.

4. Through world-leading research and enterprise activities, the University of Southampton connects with businesses to create real-world solutions to global issues. Through its educational offering, it works with partners around the world to offer relevant, flexible education, which trains students for jobs not even thought of. This connectivity is what sets Southampton apart from the rest; we make connections and change the world. http://www.southampton.ac.uk/

http://www.southampton.ac.uk/weareconnected

#weareconnected
For more information:
Glenn Harris, Media Relations, University of Southampton, Tel 023 8059 3212, email G.Harris@soton.ac.uk, Twitter: @glennh75

www.soton.ac.uk/mediacentre/

Follow us on twitter: http://twitter.com/unisouthampton

Like us on Facebook: www.facebook.com/unisouthampton

Glenn Harris | AlphaGalileo

More articles from Information Technology:

nachricht Seeing the forest through the trees with a new LiDAR system
28.06.2017 | The Optical Society

nachricht Drones that drive
27.06.2017 | Massachusetts Institute of Technology, CSAIL

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>