Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough technique offers prospect of silicon detectors for telecommunications

06.10.2014

A team of researchers, led by the Optoelectronics Research Centre (ORC) at the University of Southampton, has demonstrated a breakthrough technique that offers the first possibility of silicon detectors for telecommunications.

For decades, silicon has been the foundation of the microelectronics revolution and, owing to its excellent optical properties in the near- and mid-infrared range, is now promising to have a similar impact on photonics.

The team's research, reported in the journal Nature Materials, describes engineering the electronic band structure of laser-crystallised silicon photonic devices to help overcome one of the key challenges of using silicon in data communications.

The laser processing technique has been developed for their silicon optical fibre platform. It demonstrates that it is possible to completely crystallise the core material, while at the same time writing in large stresses to modify the optoelectronic properties, achieving extreme bandgap reductions from 1.11 eV down to 0.59 eV, enabling optical detection out to 2,100 nm.

Incorporating silicon materials within the fibre geometry avoids the issues associated with coupling between the micron-sized fibres used for the transport of light, and the nanoscale waveguides on-chip that are employed for data processing and communications systems.

Dr Anna Peacock, an Associate Professor in Optoelectronics who heads the group in the ORC, comments: "The ability to grow single crystal-like materials directly inside the fibre core is a truly exciting prospect as, for the first time, the optoelectronic properties of the silicon fibre devices will be able to approach those of their on-chip counterparts."

Dr Noel Healy, the lead researcher on the project, adds: "Our discovery uses large variable strains to provide unprecedented control over silicon's optoelectronic properties. This greatly increases the number of potential applications for the material in both electrical and optical applications.

"Our paper shows that we can halve the material's bandgap energy. That means silicon can now be considered as a medium for optical detection all the way through the telecommunications band."

Fellow researcher Dr Sakellaris Mailis points out that this versatile laser processing method can be easily extended to a wide range of material systems.

Full bibliographic information

Extreme electronic bandgap modification in laser-crystallized ​silicon optical fibres
Noel Healy, Sakellaris Mailis, Nadezhda M. Bulgakova, Pier J. A. Sazio, Todd D. Day, Justin R. Sparks, Hiu Y. Cheng, John V. Badding & Anna C. Peacock
Nature Materials (2014)
doi:10.1038/nmat4098
To read the paper in full visit: http://www.nature.com/nmat/journal/vaop/ncurrent/full/nmat4098.html

Notes for editors

1. The attached image shows a single-crystal-like silicon core fibre with a thermodynamic snap shot of the laser heating.

2. Nature Materials i s a respected multi-disciplinary journal that brings together cutting-edge research across the entire spectrum of materials science and engineering.

To read the paper in full visit: http://www.nature.com/nmat/journal/vaop/ncurrent/full/nmat4098.html

3. The full collaborative research team includes Professor N. Bulgakova currently at HiLASE, Institute of Physics ASCR; Professor J. Badding, Dr T. Day, Dr J. Sparks, and Ms H. Cheng of the Department of Chemistry and the Materials Research Institute at Penn State University, and Dr P. Sazio of the ORC. A significant component of the work was conducted using the Diamond Light Source with the assistance of Dr K. Ignatyev.

4. Through world-leading research and enterprise activities, the University of Southampton connects with businesses to create real-world solutions to global issues. Through its educational offering, it works with partners around the world to offer relevant, flexible education, which trains students for jobs not even thought of. This connectivity is what sets Southampton apart from the rest; we make connections and change the world. http://www.southampton.ac.uk/

http://www.southampton.ac.uk/weareconnected

#weareconnected
For more information:
Glenn Harris, Media Relations, University of Southampton, Tel 023 8059 3212, email G.Harris@soton.ac.uk, Twitter: @glennh75

www.soton.ac.uk/mediacentre/

Follow us on twitter: http://twitter.com/unisouthampton

Like us on Facebook: www.facebook.com/unisouthampton

Glenn Harris | AlphaGalileo

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>