Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough technique offers prospect of silicon detectors for telecommunications

06.10.2014

A team of researchers, led by the Optoelectronics Research Centre (ORC) at the University of Southampton, has demonstrated a breakthrough technique that offers the first possibility of silicon detectors for telecommunications.

For decades, silicon has been the foundation of the microelectronics revolution and, owing to its excellent optical properties in the near- and mid-infrared range, is now promising to have a similar impact on photonics.

The team's research, reported in the journal Nature Materials, describes engineering the electronic band structure of laser-crystallised silicon photonic devices to help overcome one of the key challenges of using silicon in data communications.

The laser processing technique has been developed for their silicon optical fibre platform. It demonstrates that it is possible to completely crystallise the core material, while at the same time writing in large stresses to modify the optoelectronic properties, achieving extreme bandgap reductions from 1.11 eV down to 0.59 eV, enabling optical detection out to 2,100 nm.

Incorporating silicon materials within the fibre geometry avoids the issues associated with coupling between the micron-sized fibres used for the transport of light, and the nanoscale waveguides on-chip that are employed for data processing and communications systems.

Dr Anna Peacock, an Associate Professor in Optoelectronics who heads the group in the ORC, comments: "The ability to grow single crystal-like materials directly inside the fibre core is a truly exciting prospect as, for the first time, the optoelectronic properties of the silicon fibre devices will be able to approach those of their on-chip counterparts."

Dr Noel Healy, the lead researcher on the project, adds: "Our discovery uses large variable strains to provide unprecedented control over silicon's optoelectronic properties. This greatly increases the number of potential applications for the material in both electrical and optical applications.

"Our paper shows that we can halve the material's bandgap energy. That means silicon can now be considered as a medium for optical detection all the way through the telecommunications band."

Fellow researcher Dr Sakellaris Mailis points out that this versatile laser processing method can be easily extended to a wide range of material systems.

Full bibliographic information

Extreme electronic bandgap modification in laser-crystallized ​silicon optical fibres
Noel Healy, Sakellaris Mailis, Nadezhda M. Bulgakova, Pier J. A. Sazio, Todd D. Day, Justin R. Sparks, Hiu Y. Cheng, John V. Badding & Anna C. Peacock
Nature Materials (2014)
doi:10.1038/nmat4098
To read the paper in full visit: http://www.nature.com/nmat/journal/vaop/ncurrent/full/nmat4098.html

Notes for editors

1. The attached image shows a single-crystal-like silicon core fibre with a thermodynamic snap shot of the laser heating.

2. Nature Materials i s a respected multi-disciplinary journal that brings together cutting-edge research across the entire spectrum of materials science and engineering.

To read the paper in full visit: http://www.nature.com/nmat/journal/vaop/ncurrent/full/nmat4098.html

3. The full collaborative research team includes Professor N. Bulgakova currently at HiLASE, Institute of Physics ASCR; Professor J. Badding, Dr T. Day, Dr J. Sparks, and Ms H. Cheng of the Department of Chemistry and the Materials Research Institute at Penn State University, and Dr P. Sazio of the ORC. A significant component of the work was conducted using the Diamond Light Source with the assistance of Dr K. Ignatyev.

4. Through world-leading research and enterprise activities, the University of Southampton connects with businesses to create real-world solutions to global issues. Through its educational offering, it works with partners around the world to offer relevant, flexible education, which trains students for jobs not even thought of. This connectivity is what sets Southampton apart from the rest; we make connections and change the world. http://www.southampton.ac.uk/

http://www.southampton.ac.uk/weareconnected

#weareconnected
For more information:
Glenn Harris, Media Relations, University of Southampton, Tel 023 8059 3212, email G.Harris@soton.ac.uk, Twitter: @glennh75

www.soton.ac.uk/mediacentre/

Follow us on twitter: http://twitter.com/unisouthampton

Like us on Facebook: www.facebook.com/unisouthampton

Glenn Harris | AlphaGalileo

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>