Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough offers new route to large-scale quantum computing

22.10.2012
In a key step toward creating a working quantum computer, Princeton researchers have developed a method that may allow the quick and reliable transfer of quantum information throughout a computing device

The finding, by a team led by Princeton physicist Jason Petta, could eventually allow engineers to build quantum computers consisting of millions of quantum bits, or qubits. So far, quantum researchers have only been able to manipulate small numbers of qubits, not enough for a practical machine.


A circuit uses microwaves to read the quantum state of an electron, a potentially scalable route to developing a quantum computer.

Credit: Jason Petta/Princeton University

"The whole game at this point in quantum computing is trying to build a larger system," said Andrew Houck, an assistant professor of electrical engineering who is part of the research team.

To make the transfer, Petta's team used a stream of microwave photons to analyze a pair of electrons trapped in a tiny cage called a quantum dot. The "spin state" of the electrons – information about how they are spinning - serves as the qubit, a basic unit of information. The microwave stream allows the scientists to read that information.

"We create a cavity with mirrors on both ends – but they don't reflect visible light, they reflect microwave radiation," Petta said. "Then we send microwaves in one end, and we look at the microwaves as they come out the other end. The microwaves are affected by the spin states of the electrons in the cavity, and we can read that change."

In an ordinary sense, the distances involved are very small; the entire apparatus operates over a little more than a centimeter. But on the subatomic scale, they are vast. It is like coordinating the motion of a top spinning on the moon with another on the surface of the earth.

"It's the most amazing thing," said Jake Taylor, a physicist at the National Institute of Standards and Technology and the Joint Quantum Institute at the University of Maryland, who worked on the project with the Princeton team. "You have a single electron almost completely changing the properties of an inch-long electrical system."

For years, teams of scientists have pursued the idea of using quantum mechanics to build a new machine that would revolutionize computing. The goal is not build a faster or more powerful computer, but to build one that approaches problems in a completely different fashion.

Standard computers store information as classical "bits", which can take on a value of either 0 or 1. These bits allow programmers to create the complex instructions that are the basis for modern computing power. Since Alan Turing took the first steps toward creating a computer at the University of Cambridge and Princeton in 1936, engineers have created vastly more powerful and complex machines, but this basic binary system has remained unchanged.

The power of a quantum computer comes from the strange rules of quantum mechanics, which describe the universe of subatomic particles. Quantum mechanics says that an electron can spin in one direction, representing a 1, or in another direction, a 0. But it can also be in something called "superposition" representing all states between 1 and 0. If scientists and engineers can build a working machine that takes advantage of this, they would open up entirely new fields of computing.

"The point of a quantum computer is not that they can do what a normal computer can do but faster; that's not what they are," said Houck. "The quantum computer would allow us to approach problems differently. It would allow us to solve problems that cannot be solved with a normal computer."

Mathematicians are still working on possible uses for a quantum system, but the machines could allow them to accomplish tasks such as factoring currently unfactorable numbers, breaking codes or predicting the behavior of molecules.

One challenge facing scientists is that the spins of electrons, or any other quantum particles, are incredibly delicate. Any outside influences, whether a wisp of magnetism or glimpse of light, destabilizes the electrons' spins and introduces errors.

Over the years, scientists have developed techniques to observe spin states without disturbing them. (This year's Nobel Prize in physics honored two scientists who first demonstrated the direct observation of quantum particles.) But analyzing small numbers of spins is not enough; millions will be required to make a real quantum processor.

To approach the problem, Petta's team combined techniques from two branches of science: from materials science, they used a structure called a quantum dot to hold and analyze electrons' spins; and from optics, they adopted a microwave channel to transfer the spin information from the dot.

To make the quantum dots, the team isolated a pair of electrons on a small section of material called a "semiconductor nanowire." Basically, that means a wire that is so thin that it can hold electrons like soda bubbles in a straw. They then created small "cages" along the wire. The cages are set up so that electrons will settle into a particular cage depending on their energy level.

This is how the team reads the spin state: electrons of similar spin will repel, while those of different spins will attract. So the team manipulates the electrons to a certain energy level and then reads their position. If they are in the same cage, they are spinning differently; if they are in different cages, the spins are the same.

The second step is to place this quantum dot inside the microwave channel. This allows the team to transfer the information about the pair's spin state – the qubit.

Petta said the next step is to increase the reliability of the setup for a single electron pair. After that, the team plans to add more quantum dots to create more qubits. Team members are cautiously optimistic. There appear to be no insurmountable problems at this point but, as with any system, increasing complexity could lead to unforeseen difficulties.

"The methods we are using here are scalable, and we would like to use them in a larger system," Petta said. "But to make use of the scaling, it needs to work a little better. The first step is to make better mirrors for the microwave cavity."

The research was reported in the journal Nature on Oct. 18. In addition to Petta, Houck and Taylor, the research team includes associate research scholar Karl Petersson, undergraduate student Louis McFaul, post-doctoral researcher Minkyung Jung and graduate student Michael Schroer of the Princeton physics department.

Support for the research was provided by the National Science Foundation, the Alfred P. Sloan Foundation, the Packard Foundation, the Army Research Office, and the Defense Advanced Research Projects Agency Quantum Entanglement Science and Technology Program.

John Sullivan | EurekAlert!
Further information:
http://www.princeton.edu

More articles from Information Technology:

nachricht Intelligent maps will help robots navigate in your home
19.06.2018 | Schwedischer Forschungsrat - The Swedish Research Council

nachricht Football through the eyes of a computer
14.06.2018 | Universität Konstanz

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>