Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough for information technology using Heusler materials

13.06.2014

Basis for future development of very high performance spintronic components

It is the breakthrough that physicists and chemists around the world have long anticipated and it will play a pivotal role in information technology in coming years. Researchers at Johannes Gutenberg University Mainz (JGU) have managed, for the first time, to directly observe the 100 percent spin polarization of a Heusler compound. Heusler alloys are composed of several metallic elements arranged in a lattice structure.

They are among those materials that potentially can be used for ever smaller data storage components with ever greater storage capacity. However, doubts have been recently expressed as to whether Heusler materials are actually suitable for this purpose.

The physicists at Mainz University have now demonstrated that the Heusler compound Co2MnSi has the necessary electronic properties. The project was conducted in collaboration with theoretical physicists and chemists at the Ludwig-Maximilians-Universität (LMU) München and the Max Planck Institute for Chemical Physics of Solids (MPI-CPfS) in Dresden.

The results have recently been published in the online scientific journal Nature Communications. The findings provide the cornerstone for the future development of high-performance spintronic devices using Heusler materials. The potential applications include hard disk reader heads and non-volatile storage elements.

Electrons act as charge carriers in metals and semi-conductors. However, they not only have a charge that is relevant in conventional electronics but also a magnetic moment, the spin, which can be thought of as originating from a rotation of the electron around its own axis. Spin-based electronics, or spintronics, is widely seen as an integral part of information technology of the future, but innovative materials are required if this concept is to be appropriately realized. Potential applications are, for example, hard disk drive read heads and non-volatile magnetic memory.

One decisive parameter in this connection is the spin polarization, i.e., the degree of parallel orientation of the spins of the electrons that transport the charge. The ideal material will have the maximum possible spin polarization, i.e., the spins of the maximum number of current carrying electrons point in the same direction.

The Mainz physicists have been able to produce the first experimental proof of almost complete spin polarization at room temperature in the metallic Heusler alloy Co2MnSi. "This class of materials has long been under investigation and there is substantial theoretical evidence for the required electronic properties of Heusler compounds but no single experiment has previously been able to confirm 100 percent spin polarization at room temperature," explained PD Dr. Martin Jourdan of JGU, the primary author of the study.

Encouraging results had already been obtained at very low temperatures of –269 degree Celsius. Crucial for potential applications of the compound Co2MnSi, consisting of cobalt, manganese, and silicon, is an additional aspect of the experimental findings made by the scientists: They observed the high spin polarization at the material's surface.

Professor Claudia Felser, who established the field of research into half-metallic Heusler materials 15 years ago, sees the results of the study as a long-awaited breakthrough. "Direct experimental evidence of 100 percent spin polarization has finally been found”, said Felser, Director of the Max Planck Institute for Chemical Physics of Solids in Dresden. “This represents a major step forward when it comes to the development of new spintronic devices."

The successful experiments were based on the preparation of samples with extreme precision. For this the crystalline structure of the Heusler compound had to be perfectly ordered, in particular at the material's surface, which was realized in Mainz by means of thin-film preparation in ultra-high vacuum. The spin polarization was then measured using photo electron spectroscopy and could be explained in collaboration with the theoreticians at LMU and the MPI-CPfS as the result of a special combination of bulk and surface properties of the compound.

"It is not merely a breakthrough in the search for new spintronic materials but also in the interplay between theory and experiment," remarked Jourdan. "We were able to show that perfectly prepared materials actually have the properties that have been theoretically predicted." Heusler materials are being researched globally, particularly in Japan, Germany, and the USA. At JGU they are the subject of a core research unit that is part of the Graduate School of Excellence “Materials Science in Mainz” (MAINZ) and the Center for Innovative and Emerging Materials (CINEMA).

The LMU physicochemists PD Dr. Jan Minar, Professor Jürgen Braun, and Professor Hubert Ebert provided the theoretical framework for this study. "The spectroscopic calculations were carried out using a so-called one-step model," explained Minar, a member of Ebert's team that developed the theoretical program. "Such a combination of electronic structure and theoretical photoemission calculations made direct comparison with the corresponding experimental data possible, which in turn was essential to interpreting the 100 percent spin polarization that was measured."

Image:
http://www.uni-mainz.de/bilder_presse/08_physik_komet_heusler_verbindung.jpg
Diagram illustrating the principle of spin-resolved photoemission spectroscopy of thin Heusler films
ill./©: Martin Jourdan, JGU

Publication:
Martin Jourdan et al.
Direct observation of half-metallicity in the Heusler compound Co2MnSi
Nature Communications, 30 May 2014
DOI:10.1038/ncomms4974

Further information:
PD Dr. Martin Jourdan
Institute of Physics
Johannes Gutenberg University Mainz (JGU)
D 55099 Mainz, GERMANY
phone +49 6131 39-23635
fax +49 6131 39-24076
e-mail: jourdan@uni-mainz.de
http://www.klaeui-lab.physik.uni-mainz.de/505.php

Weitere Informationen:

http://www.klaeui-lab.physik.uni-mainz.de/ ;
http://www.nature.com/ncomms/2014/140530/ncomms4974/full/ncomms4974.html ;
http://www.cup.uni-muenchen.de/dept/ch/pc/ebert.php ;
http://www.cpfs.mpg.de/inorganic_chemistry

Petra Giegerich | idw - Informationsdienst Wissenschaft

Further reports about: Breakthrough Communications JGU LMU Physics materials metallic photoemission polarization spectroscopy structure

More articles from Information Technology:

nachricht A New Kind of Wood Chip: Collaboration Could Yield Biodegradable Computer Chips
28.05.2015 | University of Wisconsin-Madison

nachricht New transregional special research field at the universities of Stuttgart and Constance
28.05.2015 | Universität Stuttgart

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lasers are the key to mastering challenges in lightweight construction

Many joining and cutting processes are possible only with lasers. New technologies make it possible to manufacture metal components with hollow structures that are significantly lighter and yet just as stable as solid components. In addition, lasers can be used to combine various lightweight construction materials and steels with each other. The Fraunhofer Institute for Laser Technology ILT in Aachen is presenting a range of such solutions at the LASER World of Photonics trade fair from June 22 to 25, 2015 in Munich, Germany, (Hall A3, Stand 121).

Lightweight construction materials are popular: aluminum is used in the bodywork of cars, for example, and aircraft fuselages already consist in large part of...

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Quasi-sexual gene transfer drives genetic diversity of hot spring bacteria

29.05.2015 | Life Sciences

First Eastern Pacific tropical depression runs ahead of dawn

29.05.2015 | Earth Sciences

Donuts, math, and superdense teleportation of quantum information

29.05.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>