Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough for information technology using Heusler materials

13.06.2014

Basis for future development of very high performance spintronic components

It is the breakthrough that physicists and chemists around the world have long anticipated and it will play a pivotal role in information technology in coming years. Researchers at Johannes Gutenberg University Mainz (JGU) have managed, for the first time, to directly observe the 100 percent spin polarization of a Heusler compound. Heusler alloys are composed of several metallic elements arranged in a lattice structure.

They are among those materials that potentially can be used for ever smaller data storage components with ever greater storage capacity. However, doubts have been recently expressed as to whether Heusler materials are actually suitable for this purpose.

The physicists at Mainz University have now demonstrated that the Heusler compound Co2MnSi has the necessary electronic properties. The project was conducted in collaboration with theoretical physicists and chemists at the Ludwig-Maximilians-Universität (LMU) München and the Max Planck Institute for Chemical Physics of Solids (MPI-CPfS) in Dresden.

The results have recently been published in the online scientific journal Nature Communications. The findings provide the cornerstone for the future development of high-performance spintronic devices using Heusler materials. The potential applications include hard disk reader heads and non-volatile storage elements.

Electrons act as charge carriers in metals and semi-conductors. However, they not only have a charge that is relevant in conventional electronics but also a magnetic moment, the spin, which can be thought of as originating from a rotation of the electron around its own axis. Spin-based electronics, or spintronics, is widely seen as an integral part of information technology of the future, but innovative materials are required if this concept is to be appropriately realized. Potential applications are, for example, hard disk drive read heads and non-volatile magnetic memory.

One decisive parameter in this connection is the spin polarization, i.e., the degree of parallel orientation of the spins of the electrons that transport the charge. The ideal material will have the maximum possible spin polarization, i.e., the spins of the maximum number of current carrying electrons point in the same direction.

The Mainz physicists have been able to produce the first experimental proof of almost complete spin polarization at room temperature in the metallic Heusler alloy Co2MnSi. "This class of materials has long been under investigation and there is substantial theoretical evidence for the required electronic properties of Heusler compounds but no single experiment has previously been able to confirm 100 percent spin polarization at room temperature," explained PD Dr. Martin Jourdan of JGU, the primary author of the study.

Encouraging results had already been obtained at very low temperatures of –269 degree Celsius. Crucial for potential applications of the compound Co2MnSi, consisting of cobalt, manganese, and silicon, is an additional aspect of the experimental findings made by the scientists: They observed the high spin polarization at the material's surface.

Professor Claudia Felser, who established the field of research into half-metallic Heusler materials 15 years ago, sees the results of the study as a long-awaited breakthrough. "Direct experimental evidence of 100 percent spin polarization has finally been found”, said Felser, Director of the Max Planck Institute for Chemical Physics of Solids in Dresden. “This represents a major step forward when it comes to the development of new spintronic devices."

The successful experiments were based on the preparation of samples with extreme precision. For this the crystalline structure of the Heusler compound had to be perfectly ordered, in particular at the material's surface, which was realized in Mainz by means of thin-film preparation in ultra-high vacuum. The spin polarization was then measured using photo electron spectroscopy and could be explained in collaboration with the theoreticians at LMU and the MPI-CPfS as the result of a special combination of bulk and surface properties of the compound.

"It is not merely a breakthrough in the search for new spintronic materials but also in the interplay between theory and experiment," remarked Jourdan. "We were able to show that perfectly prepared materials actually have the properties that have been theoretically predicted." Heusler materials are being researched globally, particularly in Japan, Germany, and the USA. At JGU they are the subject of a core research unit that is part of the Graduate School of Excellence “Materials Science in Mainz” (MAINZ) and the Center for Innovative and Emerging Materials (CINEMA).

The LMU physicochemists PD Dr. Jan Minar, Professor Jürgen Braun, and Professor Hubert Ebert provided the theoretical framework for this study. "The spectroscopic calculations were carried out using a so-called one-step model," explained Minar, a member of Ebert's team that developed the theoretical program. "Such a combination of electronic structure and theoretical photoemission calculations made direct comparison with the corresponding experimental data possible, which in turn was essential to interpreting the 100 percent spin polarization that was measured."

Image:
http://www.uni-mainz.de/bilder_presse/08_physik_komet_heusler_verbindung.jpg
Diagram illustrating the principle of spin-resolved photoemission spectroscopy of thin Heusler films
ill./©: Martin Jourdan, JGU

Publication:
Martin Jourdan et al.
Direct observation of half-metallicity in the Heusler compound Co2MnSi
Nature Communications, 30 May 2014
DOI:10.1038/ncomms4974

Further information:
PD Dr. Martin Jourdan
Institute of Physics
Johannes Gutenberg University Mainz (JGU)
D 55099 Mainz, GERMANY
phone +49 6131 39-23635
fax +49 6131 39-24076
e-mail: jourdan@uni-mainz.de
http://www.klaeui-lab.physik.uni-mainz.de/505.php

Weitere Informationen:

http://www.klaeui-lab.physik.uni-mainz.de/ ;
http://www.nature.com/ncomms/2014/140530/ncomms4974/full/ncomms4974.html ;
http://www.cup.uni-muenchen.de/dept/ch/pc/ebert.php ;
http://www.cpfs.mpg.de/inorganic_chemistry

Petra Giegerich | idw - Informationsdienst Wissenschaft

Further reports about: Breakthrough Communications JGU LMU Physics materials metallic photoemission polarization spectroscopy structure

More articles from Information Technology:

nachricht New microchip demonstrates efficiency and scalable design
23.08.2016 | Princeton University, Engineering School

nachricht Computer programming made easier
16.08.2016 | National Science Foundation

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

Im Focus: Every atom counts

Malignant cancer cells not only proliferate faster than most body cells. They are also more dependent on the most important cellular garbage disposal unit, the proteasome, which degrades defective proteins. Therapies for some types of cancer exploit this dependence: Patients are treated with inhibitors, which block the proteasome. The ensuing pile-up of junk overwhelms the cancer cell, ultimately killing it. Scientists have now succeeded in determining the human proteasome’s 3D structure in unprecedented detail and have deciphered the mechanism by which inhibitors block the proteasome. Their results will pave the way to develop more effective proteasome inhibitors for cancer therapy.

In order to understand how cellular machines such as the proteasome work, it is essential to determine their three-dimensional structure in detail. With its...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

Towards the connected, automated and electrified automobiles: AMAA conference in Brussels

02.08.2016 | Event News

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

 
Latest News

New microchip demonstrates efficiency and scalable design

23.08.2016 | Information Technology

Genetic Regulation of the Thymus Function Identified

23.08.2016 | Life Sciences

Biomass turnover time in ecosystems is halved by land use

23.08.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>